[1]

Ickowitz A, Powell B, Rowland D, Jones A, Sunderland T. 2019. Agricultural intensification, dietary diversity, and markets in the global food security narrative. Global Food Security 20:9−16

doi: 10.1016/j.gfs.2018.11.002
[2]

Qin Y, Shi LH, Song L, Stöttinger B, Tan KF. 2018. Integrating consumers’ motives with suppliers’ solutions to combat Shanzhai: A phenomenon beyond counterfeit. Business Horizons 61:229−37

doi: 10.1016/j.bushor.2017.11.009
[3]

Walker GS. 2017. Food authentication and traceability: An Asian and Australian perspective. Food Control 72:168−72

doi: 10.1016/j.foodcont.2016.01.028
[4]

Aung MM, Chang YS. 2014. Traceability in a food supply chain: Safety and quality perspectives. Food Control 39:172−84

doi: 10.1016/j.foodcont.2013.11.007
[5]

Bosona T, Gebresenbet G. 2013. Food traceability as an integral part of logistics management in food and agricultural supply chain. Food Control 33(1):32−48

doi: 10.1016/j.foodcont.2013.02.004
[6]

Sun C, Li W, Zhou C, Li M, Yang X. 2013. Anti-counterfeit system for agricultural product origin labeling based on GPS data and encrypted Chinese-sensible Code. Computers and Electronics in Agriculture 92:82−91

doi: 10.1016/j.compag.2012.12.014
[7]

Qian J, Xing B, Zhang B, Yang H. 2021. Optimizing QR code readability for curved agro-food packages using response surface methodology to improve mobile phone-based traceability. Food Packaging and Shelf Life 28:100638

doi: 10.1016/j.fpsl.2021.100638
[8]

Bibi F, Guillaume C, Gontard N, Sorli B. 2017. A review: RFID technology having sensing aptitudes for food industry and their contribution to tracking and monitoring of food products. Trends in Food Science & Technology 62:91−103

doi: 10.1016/j.jpgs.2017.01.013
[9]

Fang Z, Zhao Y, Warner RD, Johnson SK. 2017. Active and intelligent packaging in meat industry. Trends in Food Science & Technology 61:60−71

doi: 10.1016/j.jpgs.2017.01.002
[10]

Ueda Y, Morishita J, Hongyo T. 2019. Biological fingerprint using scout computed tomographic images for positive patient identification. Medical Physics 46(10):4600−9

doi: 10.1002/mp.13779
[11]

Chen J, Chen J, Wang Z, Liang C, Lin C. 2020. Identity-aware face super-resolution for low-resolution face recognition. IEEE Signal Processing Letters 27:645−49

doi: 10.1109/LSP.2020.2986942
[12]

Moolla Y, De Kock A, Mabuza-Hocquet G, Ntshangase CS, Nelufule N, et al. 2021. Biometric recognition of infants using fingerprint, iris, and ear biometrics. IEEE Access 9:38269−86

doi: 10.1109/ACCESS.2021.3062282
[13]

Sharma RP, Dey S. 2019. Two-stage quality adaptive fingerprint image enhancement using Fuzzy C-means clustering based fingerprint quality analysis. Image and Vision Computing 83-84:1−16

doi: 10.1016/j.imavis.2019.02.006
[14]

Esteki M, Shahsavari Z, Simal-Gandara J. 2019. Food identification by high performance liquid chromatography fingerprinting and mathematical processing. Food Research International 122:303−17

doi: 10.1016/j.foodres.2019.04.025
[15]

Durić G, Mićić N, Pasalić B. 2015. Lenticels as pomological characteristic of apple and pear fruits. Acta Horticulturae 1099:771−75

doi: 10.17660/actahortic.2015.1099.97
[16]

Rymbai H, Srivastav M, Sharma RR, Singh SK. 2012. Lenticels on mango fruit: Origin, development, discoloration and prevention of their discoloration. Scientia Horticulturae 135:164−70

doi: 10.1016/j.scienta.2011.11.018
[17]

Tamjinda B, Sirphanich J, Nobuchi T. 1992. Anatomy of lenticels and the occurrence of their discoloration in mangoes. Agriculture and Natural Resources 26:57−64

[18]

Tur AO, Selbes B, Öztürk Hİ, Karakaya İ, Demirel B. 2021. Importance of Image Enhancement Methods for Fingerprint Recognition. Proc. 2021 29th Signal Processing and Communications Applications Conference (SIU), Istanbul, Turkey, 2021, pp. 1−4. IEEE. https://doi.org/10.1109/SIU53274.2021.9477891

[19]

Askari S. 2021. Fuzzy C-Means clustering algorithm for data with unequal cluster sizes and contaminated with noise and outliers: Review and development. Expert Systems With Applications 165:113856

doi: 10.1016/j.eswa.2020.113856
[20]

Nurzyńska K, Haraszczuk R. 2012. Detection and normalization of blown-out illumination areas in grey-scale images. Proc. International Symposium on Visual Computing, Heidelberg, 2012, 7431: 282-91. Heidelberg: Springer

[21]

Patel MB, Parikh SM, Patel AR. 2020. Global normalization for fingerprint image enhancement. In Computational Vision and Bio-Inspired Computing. ICCVBIC 2019. Advances in Intelligent Systems and Computing, eds. Smys S, Tavares J, Balas V, Iliyasu A. 1108:1059−66. Cham: Springer. https://doi.org/10.1007/978-3-030-37218-7_111

[22]

Zhou L, Li W, Du Y, Lei B, Liang S. 2019. Adaptive illumination-invariant face recognition via local nonlinear multi-layer contrast feature. Journal of Visual Communication and Image Representation 64:102641

doi: 10.1016/j.jvcir.2019.102641
[23]

Bilal M, Shah JA, Qureshi IM, Ahmed AH. 2018. Motion adaptive wavelet thresholding for recovery of compressively sampled static and dynamic MR images. Applied Magnetic Resonance 49:1027−41

doi: 10.1007/s00723-018-1022-1
[24]

Muhammed A, Pais AR. 2020. A Novel Fingerprint Image Enhancement based on Super Resolution. Proc. 2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS), Coimbatore, India, 2020, pp. 165−70. IEEE. https://doi.org/10.1109/ICACCS48705.2020.9074196

[25]

Sharma R, Jain M. 2021. A Versatile Medical Image Enhancement Algorithm Based on Wavelet Transform. JIPS 17:1170−78

doi: 10.3745/JIPS.03.0170
[26]

Brunetti A, Buongiorno D, Trotta GF, Bevilacqua V. 2018. Computer vision and deep learning techniques for pedestrian detection and tracking: A survey. Neurocomputing 300:17−33

doi: 10.1016/j.neucom.2018.01.092
[27]

Pathak AR, Pandey M, Rautaray S. 2018. Application of deep learning for object detection. Procedia Computer Science 132:1706−17

doi: 10.1016/j.procs.2018.05.144
[28]

Rao BS. 2020. Dynamic Histogram Equalization for contrast enhancement for digital images. Applied Soft Computing 89:106114

doi: 10.1016/j.asoc.2020.106114