[1]

Liu Y, Song Y, Ruan Y. 2022. Sugar conundrum in plant - pathogen interactions: roles of invertase and sugar transporters depend on pathosystems. Journal of Experimental Botany 73:1910−25

doi: 10.1093/jxb/erab562
[2]

Chen LQ, Hou BH, Lalonde S, Takanaga H, Hartung ML, et al. 2010. Sugar transporters for intercellular exchange and nutrition of pathogens. Nature 468:527−32

doi: 10.1038/nature09606
[3]

Chen L, Qu X, Hou BH, Sosso D, Osorio S, et al. 2012. Sucrose efflux mediated by SWEET proteins as a key step for phloem transport. Science 335:207−11

doi: 10.1126/science.1213351
[4]

Eom JS, Chen L, Sosso D, Julius BT, Lin IW, et al. 2015. SWEETs, transporters for intracellular and intercellular sugar translocation. Current Opinion in Plant Biology 25:53−62

doi: 10.1016/j.pbi.2015.04.005
[5]

Misra VA, Wafula EK, Wang Y, DePamphilis CW, Timko MP. 2019. Genome-wide identification of MST, SUT and SWEET family sugar transporters in root parasitic angiosperms and analysis of their expression during host parasitism. BMC Plant Biology 19:196

doi: 10.1186/s12870-019-1786-y
[6]

Lin IW, Sosso D, Chen L, Gase K, Kim SG, et al. 2014. Nectar secretion requires sucrose phosphate synthases and the sugar transporter SWEET9. Nature 508:546−49

doi: 10.1038/nature13082
[7]

Feng C, Han J, Han X, Jiang J. 2015. Genome-wide identification, phylogeny, and expression analysis of the SWEET gene family in tomato. Gene 573:261−72

doi: 10.1016/j.gene.2015.07.055
[8]

Gao Y, Wang Z, Kumar V, Xu X, Yuan D, et al. 2018. Genome-wide identification of the SWEET gene family in wheat. Gene 642:284−92

doi: 10.1016/j.gene.2017.11.044
[9]

Hu B, Wu H, Huang W, Song J, Zhou Y, et al. 2019. SWEET gene family in Medicago truncatula: genome-wide identification, expression and substrate specificity analysis. Plants 8:338

doi: 10.3390/plants8090338
[10]

Wei Y, Xiao D, Zhang C, Hou X. 2019. The expanded SWEET gene family following whole genome triplication in Brassica rapa. Genes 10:722

doi: 10.3390/genes10090722
[11]

Huang D, Chen Y, Liu X, Ni D, Bai L, et al. 2022. Genome-wide identification and expression analysis of the SWEET gene family in daylily (Hemerocallis fulva) and functional analysis of HfSWEET17 in response to cold stress. BMC Plant Biology 22:211

doi: 10.1186/s12870-022-03609-6
[12]

Zhang L, Wang L, Zhang J, Song C, Li Y, et al. 2020. Expression and localization of SWEETs in Populus and the effect of SWEET7 overexpression in secondary growth. Tree Physiology 41:882−99

doi: 10.1093/treephys/tpaa145
[13]

Jiang L, Song C, Zhu X, Yang J. 2021. SWEET transporters and the potential functions of these sequences in tea (Camellia sinensis). Frontiers in Genetics 12:655843

doi: 10.3389/fgene.2021.655843
[14]

Xu Y, Tao Y, Cheung LS, Fan C, Chen L, et al. 2014. Structures of bacterial homologues of SWEET transporters in two distinct conformations. Nature 515:448−52

doi: 10.1038/nature13670
[15]

Breia R, Conde A, Badim H, Fortes AM, Gerós H, et al. 2021. Plant SWEETs: from sugar transport to plant - pathogen interaction and more unexpected physiological roles. Plant Physiology 186:836−52

doi: 10.1093/plphys/kiab127
[16]

Sosso D, Luo D, Li Q, Sasse J, Yang J, et al. 2015. Seed filling in domesticated maize and rice depends on SWEET-mediated hexose transport. Nature Genetics 47:1489−93

doi: 10.1038/ng.3422
[17]

Miao L, Lv Y, Kong L, Chen Q, Chen C, et al. 2018. Genome-wide identification, phylogeny, evolution, and expression patterns of MtN3/saliva/SWEET genes and functional analysis of BcNS in Brassica rapa. BMC Genomics 19:174

doi: 10.1186/s12864-018-4554-8
[18]

Yang J, Luo D, Yang B, Frommer WB, Eom JS. 2018. SWEET11 and 15 as key players in seed filling in rice. New Phytologist 218:604−15

doi: 10.1111/nph.15004
[19]

Klemens PAW, Patzke K, Deitmer J, Spinner L, le Hir R, et al. 2013. Overexpression of the vacuolar sugar carrier AtSWEET16 modifies germination, growth, and stress tolerance in Arabidopsis. Plant Physiology 163:1338−52

doi: 10.1104/pp.113.224972
[20]

Le Hir R, Spinner L, Klemens PA, Chakraborti D, de Marco F, et al. 2015. Disruption of the sugar transporters AtSWEET11 and AtSWEET12 affects vascular development and freezing tolerance in Arabidopsis. Molecular Plant 8:1687−90

doi: 10.1016/j.molp.2015.08.007
[21]

Seo PJ, Park JM, Kang SK, Kim SG, Park CM. 2011. An Arabidopsis senescence-associated protein SAG29 regulates cell viability under high salinity. Planta 233:189−200

doi: 10.1007/s00425-010-1293-8
[22]

Wang L, Yao L, Hao X, Li N, Qian W, et al. 2018. Tea plant SWEET transporters: expression profiling, sugar transport, and the involvement of CsSWEET16 in modifying cold tolerance in Arabidopsis. Plant Molecular Biology 96:577−92

doi: 10.1007/s11103-018-0716-y
[23]

Yao L, Ding C, Hao X, Zeng J, Yang Y, et al. 2020. CsSWEET1a and CsSWEET17 mediate growth and freezing tolerance by promoting sugar transport across the plasma membrane. Plant and Cell Physiology 61:1669−82

doi: 10.1093/pcp/pcaa091
[24]

Cox KL, Meng F, Wilkins KE, Li F, Wang P, et al. 2017. TAL effector driven induction of a SWEET gene confers susceptibility to bacterial blight of cotton. Nature Communications 8:15588

doi: 10.1038/ncomms15588
[25]

Streubel J, Pesce C, Hutin M, Koebnik R, Boch J, et al. 2013. Five phylogenetically close rice SWEET genes confer TAL effector-mediated susceptibility to Xanthomonas oryzae pv. oryzae. New Phytologist 200:808−19

doi: 10.1111/nph.12411
[26]

Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30:2725−29

doi: 10.1093/molbev/mst197
[27]

Chen HY, Huh JH, Yu YC, Ho LH, Chen LQ, et al. 2015. The Arabidopsis vacuolar sugar transporter SWEET2 limits carbon sequestration from roots and restricts Pythium infection. The Plant Journal 83:1046−58

doi: 10.1111/tpj.12948
[28]

Cao X, Shen Q, Ma S, Liu L, Cheng J. 2020. Physiological and PIP transcriptional responses to progressive soil water deficit in three mulberry cultivars. Frontiers in Plant Science 11:1310

doi: 10.3389/fpls.2020.01310
[29]

Liu L, Cao X, Zhai Z, Ma S, Tian Y, et al. 2022. Direct evidence of drought stress memory in mulberry from a physiological perspective: Antioxidative, osmotic and phytohormonal regulations. Plant Physiology and Biochemistry: PPB 186:76−87

doi: 10.1016/j.plaphy.2022.07.001
[30]

Zhu P, Kou M, Liu C, Zhang S, Lü R, et al. 2021. Genome sequencing of Ciboria shiraiana provides insights into the pathogenic mechanisms of hypertrophy sorosis scleroteniosis. Molecular Plant-Microbe Interactions® 34:62−74

doi: 10.1094/mpmi-07-20-0201-r
[31]

He N, Zhang C, Qi X, Zhao S, Tao Y, et al. 2013. Draft genome sequence of the mulberry tree Morus notabilis. Nature Communications 4:2445

doi: 10.1038/ncomms3445
[32]

Jiao F, Luo R, Dai X, Liu H, Yu G, et al. 2020. Chromosome-level reference genome and population genomic analysis provide insights into the evolution and improvement of domesticated mulberry (Morus alba). Molecular Plant 13:1001−12

doi: 10.1016/j.molp.2020.05.005
[33]

Xia Z, Dai X, Fan W, Liu C, Zhang M, et al. 2022. Chromosome-level genomes reveal the genetic basis of descending dysploidy and sex determination in Morus plants. Genomics, Proteomics & Bioinformatics In Press

doi: 10.1016/j.gpb.2022.08.005
[34]

Chao N, Huang S, Kang X, Yidilisi K, Dai M, et al. 2022. Systematic functional characterization of cinnamyl alcohol dehydrogenase family members revealed their functional divergence in lignin biosynthesis and stress responses in mulberry. Plant Physiology and Biochemistry 186:145−56

doi: 10.1016/j.plaphy.2022.07.008
[35]

Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, et al. 2020. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Molecular Plant 13:1194−202

doi: 10.1016/j.molp.2020.06.009
[36]

Yu CS, Chen YC, Lu CH, Hwang JK. 2006. Prediction of protein subcellular localization. Proteins: Structure, Function, and Bioinformatics 64:643−51

doi: 10.1002/prot.21018
[37]

Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, et al. 2009. BLAST+: architecture and applications. BMC Bioinformatics 10:421

doi: 10.1186/1471-2105-10-421
[38]

Wang Y, Tang H, DeBarry JD, Tan X, Li J, et al. 2012. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Research 40:e49

doi: 10.1093/nar/gkr1293
[39]

Chao N, Wang R, Hou C, Yu T, Miao K, et al. 2021. Functional characterization of two Chalcone isomerase (CHI) revealing their responsibility for anthocyanins accumulation in mulberry. Plant Physiology and Biochemistry 161:65−73

doi: 10.1016/j.plaphy.2021.01.044
[40]

Shukla P, Reddy RA, Ponnuvel KM, Rohela GK, Shabnam AA, et al. 2019. Selection of suitable reference genes for quantitative real-time PCR gene expression analysis in Mulberry (Morus alba L.) under different abiotic stresses. Molecular Biology Reports 46:1809−17

doi: 10.1007/s11033-019-04631-y
[41]

Yan P, Zeng Y, Shen W, Tuo D, Li X, et al. 2020. Nimble cloning: a simple, versatile, and efficient system for standardized molecular cloning. Frontiers in Bioengineering and Biotechnology 7:460

doi: 10.3389/fbioe.2019.00460[PubMed
[42]

Li R, Liu L, Dominic K, Wang T, Fan T, et al. 2018. Mulberry (Morus alba) MmSK gene enhances tolerance to drought stress in transgenic mulberry. Plant Physiology and Biochemistry 132:603−11

doi: 10.1016/j.plaphy.2018.10.007
[43]

Lv Z, Hao L, Ma B, He Z, Luo Y, et al. 2021. Ciboria carunculoides suppresses mulberry immune responses through regulation of salicylic acid signaling. Frontiers in Plant Science 12:658590

doi: 10.3389/fpls.2021.658590
[44]

Zhu P, Zhang S, Li R, Liu C, Fan W, et al. 2021. Host-induced gene silencing of a G protein α subunit gene CsGpa1 involved in pathogen appressoria formation and virulence improves tobacco resistance to Ciboria shiraiana. Journal of Fungi 7:1053

doi: 10.3390/jof7121053
[45]

Xuan C, Lan G, Si F, Zeng Z, Wang C, et al. 2021. Systematic genome-wide study and expression analysis of SWEET gene family: sugar transporter family contributes to biotic and abiotic stimuli in watermelon. International Journal of Molecular Sciences 22:8407

doi: 10.3390/ijms22168407
[46]

Geng Y, Wu M, Zhang C. 2020. Sugar transporter ZjSWEET2.2 mediates sugar loading in leaves of Ziziphus jujuba mill. Frontiers in Plant Science 11:1081

doi: 10.3389/fpls.2020.01081
[47]

Pommerrenig B, Müdsam C, Kischka D, Neuhaus HE. 2020. Treat and trick: common regulation and manipulation of sugar transporters during sink establishment by the plant and the pathogen. Journal of Experimental Botany 71:3930−40

doi: 10.1093/jxb/eraa168
[48]

Chen L, Lin IW, Qu X, Sosso D, McFarlane HE, et al. 2015. A cascade of sequentially expressed sucrose transporters in the seed coat and endosperm provides nutrition for the Arabidopsis embryo. The Plant Cell 27:607−19

doi: 10.1105/tpc.114.134585
[49]

Gao Y, Zhang C, Han X, Wang Z, Ma L, et al. 2018. Inhibition of OsSWEET11 function in mesophyll cells improves resistance of rice to sheath blight disease. Molecular Plant Pathology 19:2149−61

doi: 10.1111/mpp.12689
[50]

Gebauer P, Korn M, Engelsdorf T, Sonnewald U, Koch C, et al. 2017. Sugar accumulation in leaves of Arabidopsis sweet11/sweet12 double mutants enhances priming of the salicylic acid-mediated defense response. Frontiers in Plant Science 8:1378

doi: 10.3389/fpls.2017.01378
[51]

Li Y, Wang Y, Zhang H, Zhang Q, Zhai H, et al. 2017. The plasma membrane-localized sucrose transporter IbSWEET10 contributes to the resistance of sweet potato to Fusarium oxysporum. Frontiers in Plant Science 8:197

doi: 10.3389/fpls.2017.00197