[1] |
Vogt ACS, Arsiwala T, Mohsen M, Vogel M, Manolova V, et al. 2021. On iron metabolism and its regulation. International Journal of Molecular Sciences 22(9):4591 doi: 10.3390/ijms22094591 |
[2] |
Abbaspour N, Hurrell R, Kelishadi R. 2014. Review on iron and its importance for human health. Journal of Research in Medical Sciences 19(2):164−74 |
[3] |
Georgieff MK. 2020. Iron deficiency in pregnancy. American Journal of Obstetrics and Gynecology 223(4):516−24 doi: 10.1016/j.ajog.2020.03.006 |
[4] |
Camaschella C. 2019. Iron deficiency. Blood 133(1):30−39 doi: 10.1182/blood-2018-05-815944 |
[5] |
Benson CS, Shah A, Stanworth SJ, Frise CJ, Spiby H, et al. 2021. The effect of iron deficiency and anaemia on women’s health. Anaesthesia 76(S4):84−95 doi: 10.1111/anae.15405 |
[6] |
Auerbach M, Adamson JW. 2016. How we diagnose and treat iron deficiency anemia. American Journal of Hematology 91(1):31−38 doi: 10.1002/ajh.24201 |
[7] |
Muñoz M, Gómez-Ramírez S, Bhandari S. 2018. The safety of available treatment options for iron-deficiency Anemia. Expert Opinion on Drug Safety 17(2):149−59 doi: 10.1080/14740338.2018.1400009 |
[8] |
Tolkien Z, Stecher L, Mander AP, Pereira DIA, Powell JJ. 2015. Ferrous sulfate supplementation causes significant gastrointestinal side-effects in adults: a systematic review and meta-analysis. Plos One 10(2):e0117383 doi: 10.1371/journal.pone.0117383 |
[9] |
Zhang C, Zhang X, Zhao G. 2020. Ferritin nanocage: a versatile nanocarrier utilized in the field of food, nutrition, and medicine. Nanomaterials 10(9):1894 doi: 10.3390/nano10091894 |
[10] |
Huang Y, Xin M, Li Q, Luo X, Wang X, et al. 2014. Chickpea seeds ferritin as a potential source in the treatment of iron deficiency anemia. Journal of Food and Nutrition Research 2(12):876−79 doi: 10.12691/jfnr-2-12-3 |
[11] |
Harrison PM, Arosio P. 1996. The ferritins: molecular properties, iron storage function and cellular regulation. Biochimica et Biophysica Acta (BBA) - Bioenergetics 1275(3):161−203 doi: 10.1016/0005-2728(96)00022-9 |
[12] |
Liu Y, Yang R, Liu J, Meng D, Zhou Z, et al. 2019. Fabrication, structure, and function evaluation of the ferritin based nano-carrier for food bioactive compounds. Food Chemistry 299:125097 doi: 10.1016/j.foodchem.2019.125097 |
[13] |
Lv C, Zhao G, Lönnerdal B. 2015. Bioavailability of iron from plant and animal ferritins. J Nutr Biochem 26(5):532−40 doi: 10.1016/j.jnutbio.2014.12.006 |
[14] |
Stefanini S, Cavallo S, Wang CQ, Tataseo P, Vecchini P, et al. 1996. Thermal stability of horse spleen apoferritin and human recombinant H apoferritin. Archives of Biochemistry and Biophysics 325(1):58−64 doi: 10.1006/abbi.1996.0007 |
[15] |
Li C, Hu X, Zhao G. 2009. Two different H-type subunits from pea seed (pisum sativum) ferritin that are responsible for fast Fe(II) oxidation. Biochimie 91(2):230−39 doi: 10.1016/j.biochi.2008.09.008 |
[16] |
Liao X, Yun S, Zhao G. 2014. Structure, function, and nutrition of phytoferritin: a newly functional factor for iron supplement. Critical Reviews in Food Science and Nutrition 54(10):1342−52 doi: 10.1080/10408398.2011.635914 |
[17] |
Fu X, Deng J, Yang H, Masuda T, Goto F, et al. 2010. A novel EP-involved pathway for iron release from soya bean seed ferritin. The Biochemical Journal 427:313−21 doi: 10.1042/BJ20100015 |
[18] |
Yang H, Fu X, Li M, Leng X, Chen B, et al. 2010. Protein association and dissociation regulated by extension peptide: a mode for iron control by phytoferritin in seeds. Plant Physiology 154(3):1481−91 doi: 10.1104/pp.110.163063 |
[19] |
Lv C, Zhang S, Zang J, Zhao G, Xu C. 2014. Four-fold channels are involved in iron diffusion into the inner cavity of plant ferritin. Biochemistry 53(14):2232−41 doi: 10.1021/bi500066m |
[20] |
Bejjani S, Pullakhandam R, Punjal R, Nair KM. 2007. Gastric digestion of pea ferritin and modulation of its iron bioavailability by ascorbic and phytic acids in caco-2 cells. World Journal of Gastroenterology 13(14):2083−88 doi: 10.3748/wjg.v13.i14.2083 |
[21] |
Kalgaonkar S, Lönnerdal B. 2009. Receptor-mediated uptake of ferritin-bound iron by human intestinal Caco-2 cells. The Journal of Nutritional Biochemistry 20(4):304−11 doi: 10.1016/j.jnutbio.2008.04.003 |
[22] |
Anderson GJ, Frazer DM. 2017. Current understanding of iron homeostasis. The American Journal of Clinical Nutrition 106:1559S−1566S doi: 10.3945/ajcn.117.155804 |
[23] |
Yanatori I, Kishi F. 2019. DMT1 and iron transport. Free Radical Biology & Medicine 133:55−63 doi: 10.1016/j.freeradbiomed.2018.07.020 |
[24] |
Lönnerdal B. 2009. Soybean ferritin: implications for iron status of vegetarians. The American Journal of Clinical Nutrition 89:S1680−S1685 doi: 10.3945/ajcn.2009.26736W |
[25] |
Masuda T. 2015. Soybean ferritin forms an iron-containing oligomer in tofu even after heat treatment. Journal of Agricultural and Food Chemistry 63(40):8890−95 doi: 10.1021/acs.jafc.5b03080 |
[26] |
Tang J, Yu Y, Chen H, Zhao G. 2019. Thermal treatment greatly improves storage stability and monodispersity of pea seed ferritin. Journal of Food Science 84(5):1188−93 doi: 10.1111/1750-3841.14581 |
[27] |
Deng J, Cheng J, Liao X, Zhang T, Leng X, et al. 2010. Comparative study on iron release from soybean (Glycine max) seed ferritin induced by anthocyanins and ascorbate. Journal of Agricultural and Food Chemistry 58(1):635−41 doi: 10.1021/jf903046u |
[28] |
Deng J, Li M, Zhang T, Chen B, Leng X, et al. 2011. Binding of proanthocyanidins to soybean (Glycine max) seed ferritin inhibiting protein degradation by protease in vitro. Food Research International 44(1):33−38 doi: 10.1016/j.foodres.2010.11.020 |
[29] |
Xing Y, Ma J, Yao Q, Chen X, Zang J, et al. 2022. The Change in the Structure and Functionality of Ferritin during the Production of Pea Seed Milk. Foods 11:557 doi: 10.3390/foods11040557 |
[30] |
Zhang X, Zang J, Chen H, Zhou K, Zhang T, et al. 2019. Thermostability of protein nanocages: the effect of natural extra peptide on the exterior surface. RSC Advances 9(43):24777−82 doi: 10.1039/C9RA04785A |
[31] |
Tan X, Liu Y, Zang J, Zhang T, Zhao G. 2021. Hyperthermostability of prawn ferritin nanocage facilitates its application as a robust nanovehicle for nutraceuticals. International Journal of Biological Macromolecules 191:152−60 doi: 10.1016/j.ijbiomac.2021.09.067 |
[32] |
Tatur J, Hagen WR, Matias PM. 2007. Crystal structure of the ferritin from the hyperthermophilic archaeal anaerobe Pyrococcus furiosus. Journal of Biological Inorganic Chemistry 12:615−30 doi: 10.1007/s00775-007-0212-3 |
[33] |
Hoppler M, Schönbächler A, Meile L, Hurrell RF, Walczyk T. 2008. Ferritin-iron is released during boiling and in vitro gastric digestion. The Journal of Nutrition 138(5):878−84 doi: 10.1093/jn/138.5.878 |
[34] |
Lönnerdal B, Bryant A, Liu X, Theil EC. 2006. Iron absorption from soybean ferritin in nonanemic women. The American Journal of Clinical Nutrition 83(1):103−7 doi: 10.1093/ajcn/83.1.103 |
[35] |
Martin CDS, Garri C, Pizarro F, Walter T, Theil EC, et al. 2008. Caco-2 intestinal epithelial cells absorb soybean ferritin by μ2 (AP2)-dependent endocytosis. The Journal of Nutrition 138(4):659−66 doi: 10.1093/jn/138.4.659 |
[36] |
Yu B, Cheng C, Wu Y, Guo L, Kong D, et al. 2020. Interactions of ferritin with scavenger receptor class A members. The Journal of Biological Chemistry 295(46):15727−41 doi: 10.1074/jbc.RA120.014690 |
[37] |
Kalgaonkar S, Lonnerdal B. 2008. Effects of dietary factors on iron uptake from ferritin by Caco-2 cells. The Journal of Nutritional Biochemistry 19(1):33−39 doi: 10.1016/j.jnutbio.2007.02.001 |