[1]
|
Vogt ACS, Arsiwala T, Mohsen M, Vogel M, Manolova V, et al. 2021. On iron metabolism and its regulation. International Journal of Molecular Sciences 22(9):4591 doi: 10.3390/ijms22094591
CrossRef Google Scholar
|
[2]
|
Abbaspour N, Hurrell R, Kelishadi R. 2014. Review on iron and its importance for human health. Journal of Research in Medical Sciences 19(2):164−74
Google Scholar
|
[3]
|
Georgieff MK. 2020. Iron deficiency in pregnancy. American Journal of Obstetrics and Gynecology 223(4):516−24 doi: 10.1016/j.ajog.2020.03.006
CrossRef Google Scholar
|
[4]
|
Camaschella C. 2019. Iron deficiency. Blood 133(1):30−39 doi: 10.1182/blood-2018-05-815944
CrossRef Google Scholar
|
[5]
|
Benson CS, Shah A, Stanworth SJ, Frise CJ, Spiby H, et al. 2021. The effect of iron deficiency and anaemia on women’s health. Anaesthesia 76(S4):84−95 doi: 10.1111/anae.15405
CrossRef Google Scholar
|
[6]
|
Auerbach M, Adamson JW. 2016. How we diagnose and treat iron deficiency anemia. American Journal of Hematology 91(1):31−38 doi: 10.1002/ajh.24201
CrossRef Google Scholar
|
[7]
|
Muñoz M, Gómez-Ramírez S, Bhandari S. 2018. The safety of available treatment options for iron-deficiency Anemia. Expert Opinion on Drug Safety 17(2):149−59 doi: 10.1080/14740338.2018.1400009
CrossRef Google Scholar
|
[8]
|
Tolkien Z, Stecher L, Mander AP, Pereira DIA, Powell JJ. 2015. Ferrous sulfate supplementation causes significant gastrointestinal side-effects in adults: a systematic review and meta-analysis. Plos One 10(2):e0117383 doi: 10.1371/journal.pone.0117383
CrossRef Google Scholar
|
[9]
|
Zhang C, Zhang X, Zhao G. 2020. Ferritin nanocage: a versatile nanocarrier utilized in the field of food, nutrition, and medicine. Nanomaterials 10(9):1894 doi: 10.3390/nano10091894
CrossRef Google Scholar
|
[10]
|
Huang Y, Xin M, Li Q, Luo X, Wang X, et al. 2014. Chickpea seeds ferritin as a potential source in the treatment of iron deficiency anemia. Journal of Food and Nutrition Research 2(12):876−79 doi: 10.12691/jfnr-2-12-3
CrossRef Google Scholar
|
[11]
|
Harrison PM, Arosio P. 1996. The ferritins: molecular properties, iron storage function and cellular regulation. Biochimica et Biophysica Acta (BBA) - Bioenergetics 1275(3):161−203 doi: 10.1016/0005-2728(96)00022-9
CrossRef Google Scholar
|
[12]
|
Liu Y, Yang R, Liu J, Meng D, Zhou Z, et al. 2019. Fabrication, structure, and function evaluation of the ferritin based nano-carrier for food bioactive compounds. Food Chemistry 299:125097 doi: 10.1016/j.foodchem.2019.125097
CrossRef Google Scholar
|
[13]
|
Lv C, Zhao G, Lönnerdal B. 2015. Bioavailability of iron from plant and animal ferritins. J Nutr Biochem 26(5):532−40 doi: 10.1016/j.jnutbio.2014.12.006
CrossRef Google Scholar
|
[14]
|
Stefanini S, Cavallo S, Wang CQ, Tataseo P, Vecchini P, et al. 1996. Thermal stability of horse spleen apoferritin and human recombinant H apoferritin. Archives of Biochemistry and Biophysics 325(1):58−64 doi: 10.1006/abbi.1996.0007
CrossRef Google Scholar
|
[15]
|
Li C, Hu X, Zhao G. 2009. Two different H-type subunits from pea seed (pisum sativum) ferritin that are responsible for fast Fe(II) oxidation. Biochimie 91(2):230−39 doi: 10.1016/j.biochi.2008.09.008
CrossRef Google Scholar
|
[16]
|
Liao X, Yun S, Zhao G. 2014. Structure, function, and nutrition of phytoferritin: a newly functional factor for iron supplement. Critical Reviews in Food Science and Nutrition 54(10):1342−52 doi: 10.1080/10408398.2011.635914
CrossRef Google Scholar
|
[17]
|
Fu X, Deng J, Yang H, Masuda T, Goto F, et al. 2010. A novel EP-involved pathway for iron release from soya bean seed ferritin. The Biochemical Journal 427:313−21 doi: 10.1042/BJ20100015
CrossRef Google Scholar
|
[18]
|
Yang H, Fu X, Li M, Leng X, Chen B, et al. 2010. Protein association and dissociation regulated by extension peptide: a mode for iron control by phytoferritin in seeds. Plant Physiology 154(3):1481−91 doi: 10.1104/pp.110.163063
CrossRef Google Scholar
|
[19]
|
Lv C, Zhang S, Zang J, Zhao G, Xu C. 2014. Four-fold channels are involved in iron diffusion into the inner cavity of plant ferritin. Biochemistry 53(14):2232−41 doi: 10.1021/bi500066m
CrossRef Google Scholar
|
[20]
|
Bejjani S, Pullakhandam R, Punjal R, Nair KM. 2007. Gastric digestion of pea ferritin and modulation of its iron bioavailability by ascorbic and phytic acids in caco-2 cells. World Journal of Gastroenterology 13(14):2083−88 doi: 10.3748/wjg.v13.i14.2083
CrossRef Google Scholar
|
[21]
|
Kalgaonkar S, Lönnerdal B. 2009. Receptor-mediated uptake of ferritin-bound iron by human intestinal Caco-2 cells. The Journal of Nutritional Biochemistry 20(4):304−11 doi: 10.1016/j.jnutbio.2008.04.003
CrossRef Google Scholar
|
[22]
|
Anderson GJ, Frazer DM. 2017. Current understanding of iron homeostasis. The American Journal of Clinical Nutrition 106:1559S−1566S doi: 10.3945/ajcn.117.155804
CrossRef Google Scholar
|
[23]
|
Yanatori I, Kishi F. 2019. DMT1 and iron transport. Free Radical Biology & Medicine 133:55−63 doi: 10.1016/j.freeradbiomed.2018.07.020
CrossRef Google Scholar
|
[24]
|
Lönnerdal B. 2009. Soybean ferritin: implications for iron status of vegetarians. The American Journal of Clinical Nutrition 89:S1680−S1685 doi: 10.3945/ajcn.2009.26736W
CrossRef Google Scholar
|
[25]
|
Masuda T. 2015. Soybean ferritin forms an iron-containing oligomer in tofu even after heat treatment. Journal of Agricultural and Food Chemistry 63(40):8890−95 doi: 10.1021/acs.jafc.5b03080
CrossRef Google Scholar
|
[26]
|
Tang J, Yu Y, Chen H, Zhao G. 2019. Thermal treatment greatly improves storage stability and monodispersity of pea seed ferritin. Journal of Food Science 84(5):1188−93 doi: 10.1111/1750-3841.14581
CrossRef Google Scholar
|
[27]
|
Deng J, Cheng J, Liao X, Zhang T, Leng X, et al. 2010. Comparative study on iron release from soybean (Glycine max) seed ferritin induced by anthocyanins and ascorbate. Journal of Agricultural and Food Chemistry 58(1):635−41 doi: 10.1021/jf903046u
CrossRef Google Scholar
|
[28]
|
Deng J, Li M, Zhang T, Chen B, Leng X, et al. 2011. Binding of proanthocyanidins to soybean (Glycine max) seed ferritin inhibiting protein degradation by protease in vitro. Food Research International 44(1):33−38 doi: 10.1016/j.foodres.2010.11.020
CrossRef Google Scholar
|
[29]
|
Xing Y, Ma J, Yao Q, Chen X, Zang J, et al. 2022. The Change in the Structure and Functionality of Ferritin during the Production of Pea Seed Milk. Foods 11:557 doi: 10.3390/foods11040557
CrossRef Google Scholar
|
[30]
|
Zhang X, Zang J, Chen H, Zhou K, Zhang T, et al. 2019. Thermostability of protein nanocages: the effect of natural extra peptide on the exterior surface. RSC Advances 9(43):24777−82 doi: 10.1039/C9RA04785A
CrossRef Google Scholar
|
[31]
|
Tan X, Liu Y, Zang J, Zhang T, Zhao G. 2021. Hyperthermostability of prawn ferritin nanocage facilitates its application as a robust nanovehicle for nutraceuticals. International Journal of Biological Macromolecules 191:152−60 doi: 10.1016/j.ijbiomac.2021.09.067
CrossRef Google Scholar
|
[32]
|
Tatur J, Hagen WR, Matias PM. 2007. Crystal structure of the ferritin from the hyperthermophilic archaeal anaerobe Pyrococcus furiosus. Journal of Biological Inorganic Chemistry 12:615−30 doi: 10.1007/s00775-007-0212-3
CrossRef Google Scholar
|
[33]
|
Hoppler M, Schönbächler A, Meile L, Hurrell RF, Walczyk T. 2008. Ferritin-iron is released during boiling and in vitro gastric digestion. The Journal of Nutrition 138(5):878−84 doi: 10.1093/jn/138.5.878
CrossRef Google Scholar
|
[34]
|
Lönnerdal B, Bryant A, Liu X, Theil EC. 2006. Iron absorption from soybean ferritin in nonanemic women. The American Journal of Clinical Nutrition 83(1):103−7 doi: 10.1093/ajcn/83.1.103
CrossRef Google Scholar
|
[35]
|
Martin CDS, Garri C, Pizarro F, Walter T, Theil EC, et al. 2008. Caco-2 intestinal epithelial cells absorb soybean ferritin by μ2 (AP2)-dependent endocytosis. The Journal of Nutrition 138(4):659−66 doi: 10.1093/jn/138.4.659
CrossRef Google Scholar
|
[36]
|
Yu B, Cheng C, Wu Y, Guo L, Kong D, et al. 2020. Interactions of ferritin with scavenger receptor class A members. The Journal of Biological Chemistry 295(46):15727−41 doi: 10.1074/jbc.RA120.014690
CrossRef Google Scholar
|
[37]
|
Kalgaonkar S, Lonnerdal B. 2008. Effects of dietary factors on iron uptake from ferritin by Caco-2 cells. The Journal of Nutritional Biochemistry 19(1):33−39 doi: 10.1016/j.jnutbio.2007.02.001
CrossRef Google Scholar
|