[1] |
Meyerowitz EA, Richterman A, Gandhi RT, Sax PE. 2021. Transmission of SARS-CoV-2: a review of viral, host, and environmental factors. Annals of Internal Medicine 174(1):69−79 doi: 10.7326/M20-5008 |
[2] |
Berlin DA, Gulick RM, Martinez FJ. 2020. Severe covid-19. The New England Journal of Medicine 383(25):2451−60 doi: 10.1056/NEJMcp2009575 |
[3] |
Hodgson SH, Mansatta K, Mallett G, Harris V, Emary KRW, et al. 2020. What defines an efficacious COVID-19 vaccine? A review of the challenges assessing the clinical efficacy of vaccines against SARS-CoV-2 The Lancet Infectious Diseases 21(2):E26−E35 doi: 10.1016/S1473-3099(20)30773-8 |
[4] |
Baden LR, El Sahly HM, Essink B, Kotloff K, Frey S, et al. 2021. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. Annals of Internal Medicine 384(5):403−16 doi: 10.1056/NEJMoa2035389 |
[5] |
Wang R, Chen J, Gao K, Wei G. 2021. Vaccine-escape and fast-growing mutations in the United Kingdom, the United States, Singapore, Spain, India, and other COVID-19-devastated countries. Genomics 113(4):2158−70 doi: 10.1016/j.ygeno.2021.05.006 |
[6] |
Vaidyanathan G. 2021. Coronavirus variants are spreading in India—what scientists know so far. Nature 593(7859):321−22 doi: 10.1038/d41586-021-01274-7 |
[7] |
Seyedpour S, Khodaei B, Loghman AH, Seyedpour N, Kisomi MF, et al. 2021. Targeted therapy strategies against SARS-CoV-2 cell entry mechanisms: A systematic review of in vitro and in vivo studies. Journal of Cellular Physiology 236(4):2364−92 doi: 10.1002/jcp.30032 |
[8] |
Jackson CB, Farzan M, Chen B, Choe H. 2022. Mechanisms of SARS-CoV-2 entry into cells. Nature Reviews Molecular Cell Biology 23(1):3−20 doi: 10.1038/s41580-021-00418-x |
[9] |
Meng QF, Tian R, Long H, Wu X, Lai J, et al. 2021. Capturing cytokines with advanced materials: A potential strategy to tackle COVID-19 Cytokine Storm. Advanced Materials 33(20):2100012 doi: 10.1002/adma.202100012 |
[10] |
Barbosa JR, de Carvalho Junior RN. 2021. Polysaccharides obtained from natural edible sources and their role in modulating the immune system: Biologically active potential that can be exploited against COVID-19. Trends in Food Science & Technology 108:223−35 doi: 10.1016/j.jpgs.2020.12.026 |
[11] |
Russo M, Moccia S, Spagnuolo C, Tedesco I, Russo GL. 2020. Roles of flavonoids against coronavirus infection. Chemico-Biological Interactions 328:109211 doi: 10.1016/j.cbi.2020.109211 |
[12] |
Mehany T, Khalifa I, Barakat H, Althwab SA, Alharbi YM, et al. 2021. Polyphenols as promising biologically active substances for preventing SARS-CoV-2: A review with research evidence and underlying mechanisms. Food Bioscience 40:100891 doi: 10.1016/j.fbio.2021.100891 |
[13] |
Bogan-Brown K, Nkrumah-Elie Y, Ishtiaq Y, Redpath P, Shao A. 2021. Potential efficacy of nutrient supplements for treatment or prevention of COVID-19. Journal of Dietary Supplements 19:336−65 doi: 10.1080/19390211.2021.1881686 |
[14] |
Das UN. 2020. Can bioactive lipids inactivate coronavirus (COVID-19)? Archives of Medical Research 51(3):282−86 doi: 10.1016/j.arcmed.2020.03.004 |
[15] |
Costa C, Tsatsakis A, Mamoulakis C, Teodoro M, Briguglio G, et al. 2017. Current evidence on the effect of dietary polyphenols intake on chronic diseases. Food and Chemical Toxicology 110:286−99 doi: 10.1016/j.fct.2017.10.023 |
[16] |
Paraiso IL, Revel JS, Stevens JF. 2020. Potential use of polyphenols in the battle against COVID-19. Current Opinion in Food Science 32:149−55 doi: 10.1016/j.cofs.2020.08.004 |
[17] |
Pan B, Fang S, Zhang J, Pan Y, Liu H, et al. 2020. Chinese herbal compounds against SARS-CoV-2: puerarin and quercetin impair the binding of viral S-protein to ACE2 receptor. Computational and Structural Biotechnology Journal 18:3518−27 doi: 10.1016/j.csbj.2020.11.010 |
[18] |
Liu X, Raghuvanshi R, Ceylan FD, Bolling BW. 2020. Quercetin and its metabolites inhibit recombinant human angiotensin-converting enzyme 2 (ACE2) activity. Journal of Agricultural and Food Chemistry 68(47):13982−89 doi: 10.1021/acs.jafc.0c05064 |
[19] |
Basu A, Sarkar A, Maulik U. 2020. Molecular docking study of potential phytochemicals and their effects on the complex of SARS-CoV2 spike protein and human ACE2. Scientific Reports 10(1):1−15 doi: 10.1038/s41598-020-74715-4 |
[20] |
Wahedi HM, Ahmad S, Abbasi SW. 2021. Stilbene-based natural compounds as promising drug candidates against COVID-19. Journal of Biomolecular Structure and Dynamics 39(9):3225−34 doi: 10.1080/07391102.2020.1762743 |
[21] |
Mhatre S, Srivastava T, Naik S, Patravale V. 2021. Antiviral activity of green tea and black tea polyphenols in prophylaxis and treatment of COVID-19: A review. Phytomedicine 85:153286 doi: 10.1016/j.phymed.2020.153286 |
[22] |
Ohgitani E, Shin-Ya M, Ichitani M, Kobayashi M, Takihara T, et al. 2021. Significant inactivation of SARS-CoV-2in vitro by a green tea catechin, a catechin-derivative, and black tea galloylated theaflavins. Molecules 26(12):3572 doi: 10.3390/molecules26123572 |
[23] |
Vardhan S, Sahoo SK. 2022. Virtual screening by targeting proteolytic sites of furin and TMPRSS2 to propose potential compounds obstructing the entry of SARS-CoV-2 virus into human host cells. Journal of Traditional and Complementary Medicine 12:6−15 doi: 10.1016/j.jtcme.2021.04.001 |
[24] |
Zhao M, Yu Y, Sun LM, Xing JQ, Li T, et al. 2021. GCG inhibits SARS-CoV-2 replication by disrupting the liquid phase condensation of its nucleocapsid protein. Nature Communications 12(1):1−14 doi: 10.1038/s41467-021-22297-8 |
[25] |
Jin Z, Du X, Xu Y, Deng Y, Liu M, et al. 2020. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature 582:289−93 doi: 10.1038/s41586-020-2223-y |
[26] |
Du A, Zheng R, Disoma C, Li S, Chen Z, et al. 2021. Epigallocatechin-3-gallate, an active ingredient of Traditional Chinese Medicines, inhibits the 3CLpro activity of SARS-CoV-2. International Journal of Biological Macromolecules 176:1−12 doi: 10.1016/j.ijbiomac.2021.02.012 |
[27] |
Jang M, Park R, Park YI, Cha YE, Yamamoto A, et al. 2021. EGCG, a green tea polyphenol, inhibits human coronavirus replication in vitro. Biochemical and Biophysical Research Communications 547:23−28 doi: 10.1016/j.bbrc.2021.02.016 |
[28] |
Sardanelli AM, Isgrò C, Palese LL. 2021. SARS-CoV-2 main protease active site ligands in the human metabolome. Molecules 26(5):1409 doi: 10.3390/molecules26051409 |
[29] |
Abdallah HM, El-Halawany AM, Sirwi A, El-Araby AM, Mohamed GA, et al. 2021. Repurposing of some natural product isolates as SARS-COV-2 main protease inhibitors via in vitro cell free and cell-based antiviral assessments and molecular modeling approaches. Pharmaceuticals 14(3):213 doi: 10.3390/ph14030213 |
[30] |
Yu R, Chen L, Lan R, Shen R, Li P. 2020. Computational screening of antagonists against the SARS-CoV-2 (COVID-19) coronavirus by molecular docking. International Journal of Antimicrobial Agents 56(2):106012 doi: 10.1016/j.ijantimicag.2020.106012 |
[31] |
Das S, Sarmah S, Lyndem S, Singha Roy A. 2021. An investigation into the identification of potential inhibitors of SARS-CoV-2 main protease using molecular docking study. Journal of Biomolecular Structure & Dynamics 39(9):3347−57 doi: 10.1080/07391102.2020.1763201 |
[32] |
Javed H, Meeran MFN, Jha NK, Ojha S. 2020. Carvacrol, a plant metabolite targeting viral protease (Mpro) and ACE2 in host cells can be a possible candidate for COVID-19. Frontiers in Plant Science 11:601335 doi: 10.3389/fpls.2020.601335 |
[33] |
Bahun M, Jukić M, Oblak D, Kranjc L, Bajc G, et al. 2022. Inhibition of the SARS-CoV-2 3CLpro main protease by plant polyphenols. Food Chemistry 373:131594 doi: 10.1016/j.foodchem.2021.131594 |
[34] |
Mouffouk C, Mouffouk S, Mouffouk S, Hambaba L, Haba H. 2021. Flavonols as potential antiviral drugs targeting SARS-CoV-2 proteases (3CLpro and PLpro), spike protein, RNA-dependent RNA polymerase (RdRp) and angiotensin-converting enzyme II receptor (ACE2). European Journal of Pharmacology 891:173759 doi: 10.1016/j.ejphar.2020.173759 |
[35] |
Yang M, Wei J, Huang T, Lei L, Shen C, et al. 2021. Resveratrol inhibits the replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in cultured Vero cells. Phytotherapy Research 35:1127−29 doi: 10.1002/ptr.6916 |
[36] |
Pasquereau S, Nehme Z, Haidar Ahmad S, Daouad F, van Assche J, et al. 2021. Resveratrol inhibits HCoV-229E and SARS-CoV-2 coronavirus replication in vitro. Viruses 13(2):354 doi: 10.3390/v13020354 |
[37] |
Tahmasebi S, El-Esawi MA, Mahmoud ZH, Timoshin A, Valizadeh H, et al. 2021. Immunomodulatory effects of nanocurcumin on Th17 cell responses in mild and severe COVID-19 patients. Journal of Cellular Physiology 236(7):5325−38 doi: 10.1002/jcp.30233 |
[38] |
Sharma VK, Prateeksha, Singh SP, Singh BN, Rao CV, et al. 2022. Nanocurcumin potently inhibits SARS-CoV-2 spike protein-induced cytokine storm by deactivation of MAPK/NF-κB signaling in epithelial cells. ACS Applied Bio Materials 5(2):483−91 doi: 10.1021/acsabm.1c00874 |
[39] |
Stevens Y, Rymenant EV, Grootaert C, Camp JV, Possemiers S, et al. 2019. The intestinal fate of citrus flavanones and their effects on gastrointestinal health. Nutrients 11(7):1464 doi: 10.3390/nu11071464 |
[40] |
Franza L, Carusi V, Nucera E, Pandolfi F. 2021. Luteolin, inflammation and cancer: Special emphasis on gut microbiota. BioFactors 47(2):181−89 doi: 10.1002/biof.1710 |
[41] |
Arango D, Diosa-Toro M, Rojas-Hernandez LS, Cooperstone JL, Schwartz SJ, et al. 2015. Dietary apigenin reduces LPS-induced expression of miR-155 restoring immune balance during inflammation. Molecular Nutrition & Food Research 59(4):763−72 doi: 10.1002/mnfr.201400705 |
[42] |
Molino S, Pisarevsky A, Badu S, Wu Q, Mingorance FL, et al. 2022. Randomized placebo-controlled trial of oral tannin supplementation on COVID-19 symptoms, gut dysbiosis and cytokine response. Journal of Functional Foods 99(4):105356 doi: 10.1016/j.jff.2022.105356 |
[43] |
Sen IK, Chakraborty I, Mandal AK, Bhanja SK, Patra S, et al. 2021. A review on antiviral and immunomodulatory polysaccharides from Indian medicinal plants, which may be beneficial to COVID-19 infected patients. International Journal of Biological Macromolecules 181:462−70 doi: 10.1016/j.ijbiomac.2021.03.162 |
[44] |
Clausen TM, Sandoval DR, Spliid CB, Pihl J, Perrett HR, et al. 2020. SARS-CoV-2 infection depends on cellular heparan sulfate and ACE2. Cell 183(4):1043−1057.E15 doi: 10.1016/j.cell.2020.09.033 |
[45] |
Kwon PS, Oh H, Kwon SJ, Jin W, Zhang F, et al. 2020. Sulfated polysaccharides effectively inhibit SARS-CoV-2 in vitro. Cell Discovery 6:50 doi: 10.1038/s41421-020-00192-8 |
[46] |
Jin W, Zhang W, Mitra D, McCandless MG, Sharma P, et al. 2020. The structure-activity relationship of the interactions of SARS-CoV-2 spike glycoproteins with glucuronomannan and sulfated galactofucan from Saccharina japonica. International Journal of Biological Macromolecules 163:1649−58 doi: 10.1016/j.ijbiomac.2020.09.184 |
[47] |
Arunkumar M, Gunaseelan S, Kubendran Aravind M, Mohankumar V, Anupam P, et al. 2021. Marine algal antagonists targeting 3CL protease and spike glycoprotein of SARS-CoV-2: a computational approach for anti-COVID-19 drug discovery. Journal of Biomolecular Structure and Dynamics 40:8961−88 doi: 10.1080/07391102.2021.1921032 |
[48] |
You Y, Song H, Wang L, Peng H, Sun Y, et al. 2022. Structural characterization and SARS-CoV-2 inhibitory activity of a sulfated polysaccharide from Caulerpa lentillifera. Carbohydrate Polymers 280:119006 doi: 10.1016/j.carbpol.2021.119006 |
[49] |
Andrew M, Jayaraman G. 2021. Marine Sulfated Polysaccharides as potential antiviral drug candidates to treat Corona Virus disease (COVID-19). Carbohydrate Research 505:108326 doi: 10.1016/j.carres.2021.108326 |
[50] |
Shahzad F, Anderson D, Najafzadeh M. 2020. The antiviral, anti-inflammatory effects of natural medicinal herbs and mushrooms and SARS-CoV-2 infection. Nutrients 12(9):2573 doi: 10.3390/nu12092573 |
[51] |
Xu J, Xiao C, Xu H, Yang S, Chen Z, et al. 2021. Anti-inflammatory effects of Ganoderma lucidum sterols via attenuation of the p38 MAPK and NF-κB pathways in LPS-induced RAW 264.7 macrophages. Food and Chemical Toxicology 150:112073 doi: 10.1016/j.fct.2021.112073 |
[52] |
Ren L, Zhang J, Zhang T. 2021. Immunomodulatory activities of polysaccharides from Ganoderma on immune effector cells. Food Chemistry 340:127933 doi: 10.1016/j.foodchem.2020.127933 |
[53] |
Jan JT, Cheng TJR, Juang YP, Ma HH, Wu YT, et al. 2021. Identification of existing pharmaceuticals and herbal medicines as inhibitors of SARS-CoV-2 infection. Proceedings of the National Academy of Sciences of the United States of America 118:e2021579118 doi: 10.1073/pnas.2021579118 |
[54] |
Yin Z, Liang Z, Li C, Wang J, Ma C, et al. 2021. Immunomodulatory effects of polysaccharides from edible fungus: a review. Food Science and Human Wellness, 10(4):393−400 doi: 10.1016/j.fshw.2021.04.001 |
[55] |
Cui J, Zhao C, Feng L, Han Y, Du H, et al. 2021. Pectins from fruits: Relationships between extraction methods, structural characteristics, and functional properties. Trends in Food Science & Technology 110:39−54 doi: 10.1016/j.jpgs.2021.01.077 |
[56] |
Trompette A, Gollwitzer ES, Pattaroni C, Lopez-Mejia IC, Riva E, et al. 2018. Dietary fiber confers protection against flu by shaping Ly6c− patrolling monocyte hematopoiesis and CD8+ T cell metabolism. Immunity 48(5):992−1005.E8 doi: 10.1016/j.immuni.2018.04.022 |
[57] |
Hu J, Zhang L, Lin W, Tang W, Chan FKL, et al. 2021. Probiotics, prebiotics and dietary approaches during COVID-19 pandemic. Trends in Food Science & Technology 108:187−96 doi: 10.1016/j.jpgs.2020.12.009 |
[58] |
Kumbhar PS, Pandya AK, Manjappa AS, Disouza JI, Patravale VB. 2021. Carbohydrates-based diagnosis, prophylaxis and treatment of infectious diseases: Special emphasis on COVID-19. Carbohydrate Polymer Technologies and Applications 2:100052 doi: 10.1016/j.carpta.2021.100052 |
[59] |
Moakes RJA, Davies SP, Stamataki Z, Grover LM. 2021. Formulation of a composite nasal spray enabling enhanced surface coverage and prophylaxis of SARS-COV-2. Advanced Materials 33:2008304 doi: 10.1002/adma.202008304 |
[60] |
Rathnasamy SK, Balaraman HB, Muniasamy R. 2021. Air-assisted dispersive liquid phase microextraction coupled chromatography quantification for purification of therapeutic lectin from aloe vera – A potential COVID-19 immune booster. Microchemical Journal 165:106187 doi: 10.1016/j.microc.2021.106187 |
[61] |
Barre A, Van Damme EJ, Simplicien M, Le Poder S, Klonjkowski B, et al. 2021. Man-specific lectins from plants, fungi, algae and cyanobacteria, as potential blockers for SARS-CoV, MERS-CoV and SARS-CoV-2 (COVID-19) coronaviruses: Biomedical perspectives. Cells 10(7):1619 doi: 10.3390/cells10071619 |
[62] |
Liu YM, Shahed-Al-Mahmud M, Chen X, Chen TH, Liao KS, et al. 2020. A carbohydrate-binding protein from the edible Lablab beans effectively blocks the infections of influenza viruses and SARS-CoV-2. Cell Reports 32(6):108016 doi: 10.1016/j.celrep.2020.108016 |
[63] |
Sheehan SA, Hamilton KL, Retzbach EP, Balachandran P, Krishnan H, et al. 2021. Evidence that Maackia amurensis seed lectin (MASL) exerts pleiotropic actions on oral squamous cells with potential to inhibit SARS-CoV-2 infection and COVID-19 disease progression. Experimental Cell Research 403(1):112594 doi: 10.1016/j.yexcr.2021.112594 |
[64] |
Chan JFW, Oh YJ, Yuan S, Chu H, Yeung ML, et al. 2022. A molecularly engineered, broad-spectrum anti-coronavirus lectin inhibits SARS-CoV-2 and MERS-CoV infection in vivo. Cell Reports Medicine 3(10):100774 doi: 10.1016/j.xcrm.2022.100774 |
[65] |
Santhi VP, Masilamani P, Sriramavaratharajan V, Murugan R, Gurav SS, et al. 2021. Therapeutic potential of phytoconstituents of edible fruits in combating emerging viral infections. Journal of Food Biochemistry 45:13851 doi: 10.1111/jfbc.13851 |
[66] |
Dimitrijevic R, Stojanovic M, Micic M, Dimitrijevic L, Gavrovic-Jankulovic M. 2012. Recombinant banana lectin as mucosal immunostimulator. Journal of Functional Foods 4(3):636−641 doi: 10.1016/j.jff.2012.04.003 |
[67] |
Jodele S, Köhl J. 2021. Tackling COVID-19 infection through complement-targeted immunotherapy. British Journal of Pharmacology 178(14):2832−48 doi: 10.1111/bph.15187 |
[68] |
Barre A, Van Damme EJM, Simplicien M, Benoist H, Rougé P. 2020. Man-specific, GalNAc/T/Tn-specific and Neu5Ac-Specific seaweed lectins as glycan probes for the SARS-CoV-2 (COVID-19) coronavirus. Marine Drugs 18(11):543 doi: 10.3390/md18110543 |
[69] |
Gong X, Li X, Xia Y, Xu J, Li Q, et al. 2020. Effects of phytochemicals from plant-based functional foods on hyperlipidemia and their underpinning mechanisms. Trends in Food Science & Technology 103:304−20 doi: 10.1016/j.jpgs.2020.07.026 |
[70] |
He C, Huang L, Wang K, Gu C, Hu J, et al. 2021. Identification of bis-benzylisoquinoline alkaloids as SARS-CoV-2 entry inhibitors from a library of natural products. Signal Transduction and Targeted Therapy 6:131 doi: 10.1038/s41392-021-00531-5 |
[71] |
Elzupir AO. 2022. Caffeine and caffeine-containing pharmaceuticals as promising inhibitors for 3-chymotrypsin-like protease of SARS-CoV-2. Journal of Biomolecular Structure & Dynamics 40:2113−20 doi: 10.1080/07391102.2020.1835732 |
[72] |
Varghese FS, Van Woudenbergh E, Overheul GJ, Eleveld MJ, Kurver L, et al. 2021. Berberine and obatoclax inhibit SARS-CoV-2 replication in primary human nasal epithelial cells in vitro. Viruses 13(2):282 doi: 10.3390/v13020282 |
[73] |
Wan JJ, Brown RS, Kielian M. 2020. Berberine chloride is an alphavirus inhibitor that targets nucleocapsid assembly. MBio 11(3):01382−20 doi: 10.1128/mBio.01382-20 |
[74] |
Farooqi AA, Qureshi MZ, Khalid S, Attar R, Martinelli C, et al. 2019. Regulation of cell signaling pathways by berberine in different cancers: searching for missing pieces of an incomplete jig-saw puzzle for an effective cancer therapy. Cancers 11(4):478 doi: 10.3390/cancers11040478 |
[75] |
Zhang ZR, Zhang YN, Zhang HQ, Zhang QY, et al. 2022. Berbamine hydrochloride potently inhibits SARS-CoV-2 infection by blocking S protein-mediated membrane fusion. PLoS Neglected Tropical Diseases 16(4):e0010363 doi: 10.1371/journal.pntd.0010363 |
[76] |
Zou K, Li Z, Zhang Y, Zhang HY, Li B, et al. 2017. Advances in the study of berberine and its derivatives: a focus on anti-inflammatory and anti-tumor effects in the digestive system. Acta Pharmacologica Sinica 38(2):157−67 doi: 10.1038/aps.2016.125 |
[77] |
Yan YQ, Fu YJ, Wu S, Qin HQ, Zhen X, et al. 2018. Anti-influenza activity of berberine improves prognosis by reducing viral replication in mice. Phytotherapy Research 32(12):2560−67 doi: 10.1002/ptr.6196 |
[78] |
Chowdhury P, Barooah AK. 2020. Tea bioactive modulate innate immunity: In perception to COVID-19 pandemic. Frontiers in Immunology 11:590716 doi: 10.3389/fimmu.2020.590716 |
[79] |
Oñatibia-Astibia A, Martínez-Pinilla E, Franco R. 2016. The potential of methylxanthine-based therapies in pediatric respiratory tract diseases. Respiratory Medicine 112:1−9 doi: 10.1016/j.rmed.2016.01.022 |
[80] |
Bhat R, Axtell R, Mitra A, Miranda M, Lock C, et al. 2010. Inhibitory role for GABA in autoimmune inflammation. Proceedings of the National Academy of Sciences of the United States of America 107(6):2580−85 doi: 10.1073/pnas.0915139107 |
[81] |
Deftereos SG, Giannopoulos G, Vrachatis DA, Siasos GD, Giotaki SG, et al. 2020. Effect of colchicine vs standard care on cardiac and inflammatory biomarkers and clinical outcomes in patients hospitalized with coronavirus disease 2019: the GRECCO-19 randomized clinical trial. JAMA Network Open 3(6):e2013136 doi: 10.1001/jamanetworkopen.2020.13136 |
[82] |
Brunetti L, Diawara O, Tsai A, Firestein BL, Nahass RG, et al. 2020. Colchicine to weather the cytokine storm in hospitalized patients with COVID-19. Journal of Clinical Medicine 9(9):2961 doi: 10.3390/jcm9092961 |
[83] |
Kumar A, Mastana SS, Lindley MR. 2016. n-3 Fatty acids and asthma. Nutrition Research Reviews 29(1):1−16 doi: 10.1017/S0954422415000116 |
[84] |
Bartoszek A, Makaro A, Bartoszek A, Kordek R, Fichna J, et al. 2020. Walnut oil alleviates intestinal inflammation and restores intestinal barrier function in mice. Nutrients 12(5):1302 doi: 10.3390/nu12051302 |
[85] |
Das UN. 2018. Arachidonic acid and other unsaturated fatty acids and some of their metabolites function as endogenous antimicrobial molecules: A review. Journal of Advanced Research 11:57−66 doi: 10.1016/j.jare.2018.01.001 |
[86] |
Leu GZ, Lin TY, Hsu JT. 2004. Anti-HCV activities of selective polyunsaturated fatty acids. Biochemical and Biophysical Research Communications 318(1):275−80 doi: 10.1016/j.bbrc.2004.04.019 |
[87] |
Simopoulos AP, Serhan CN, Bazinet RP. 2021. The need for precision nutrition, genetic variation and resolution in Covid-19 patients. Molecular Aspects of Medicine100943 doi: 10.1016/j.mam.2021.100943 |
[88] |
Ng SL, Khaw KY, Ong YS, Goh HP, Kifli N, et al. 2021. Licorice: A Potential Herb in Overcoming SARS-CoV-2 Infections. Journal of Evidence-Based Integrative Medicine 26:2515690X21996662 doi: 10.1177/2515690X21996662 |
[89] |
Yu S, Zhu Y, Xu J, Yao G, Zhang P, et al. 2021. Glycyrrhizic acid exerts inhibitory activity against the spike protein of SARS-CoV-2. Phytomedicine 85:153364 doi: 10.1016/j.phymed.2020.153364 |
[90] |
Sinha SK, Prasad SK, Islam MA, Chaudhary SK, Singh S, et al. 2021. Potential leads from liquorice against SARS-CoV-2 main protease using molecular docking simulation studies. Combinatorial Chemistry & High Throughput Screening 24(4):591−97 doi: 10.2174/1386207323999200817103148 |
[91] |
Gowda P, Patrick S, Joshi SD, Kumawat RK, Sen E. 2021. Glycyrrhizin prevents SARS-CoV-2 S1 and Orf3a induced high mobility group box 1 (HMGB1) release and inhibits viral replication. Cytokine 142:155496 doi: 10.1016/j.cyto.2021.155496 |
[92] |
Oesch F, Oesch-Bartlomowicz B, Efferth T. 2021. Toxicity as prime selection criterion among SARS-active herbal medications. Phytomedicine 85:153476 doi: 10.1016/j.phymed.2021.153476 |
[93] |
Zhang JL, Li WX, Li Y, Wong MS, Wang YJ, et al. 2021. Therapeutic options of TCM for organ injuries associated with COVID-19 and the underlying mechanism. Phytomedicine 85:153297 doi: 10.1016/j.phymed.2020.153297 |
[94] |
Sharma P, Tyagi A, Bhansali P, Pareek S, Singh V, et al. 2021. Saponins: Extraction, bio-medicinal properties and way forward to anti-viral representatives. Food and Chemical Toxicology 150:112075 doi: 10.1016/j.fct.2021.112075 |
[95] |
Kim TY, Jeon S, Jang Y, Gotina L, Won J, et al. 2021. Platycodin D, a natural component of Platycodon grandiflorum, prevents both lysosome-and TMPRSS2-driven SARS-CoV-2 infection by hindering membrane fusion. Experimental & Molecular Medicine 53(5):956−72 doi: 10.1038/s12276-021-00624-9 |
[96] |
Ghasemnejad-Berenji M. 2021. Immunomodulatory and anti-inflammatory potential of crocin in COVID-19 treatment. Journal of Food Biochemistry 45(5):e13718 doi: 10.1111/jfbc.13718 |
[97] |
Shi X, Yu L, Zhang Y, Liu Z, Zhang H, et al. 2020. Glycyrrhetinic acid alleviates hepatic inflammation injury in viral hepatitis disease via a HMGB1-TLR4 signaling pathway. International Immunopharmacology 84:106578 doi: 10.1016/j.intimp.2020.106578 |
[98] |
Yi YS. 2022. Potential benefits of ginseng against COVID-19 by targeting inflammasomes. Journal of Ginseng Research 46(6):722−30 doi: 10.1016/j.jgr.2022.03.008 |
[99] |
Park HH, Kim H, Lee HS, Seo EU, Kim JE, et al. 2021. PEGylated nanoparticle albumin-bound steroidal ginsenoside derivatives ameliorate SARS-CoV-2-mediated hyper-inflammatory responses. Biomaterials 273:120827 doi: 10.1016/j.biomaterials.2021.120827 |
[100] |
Sun B, Yu S, Zhao D, Guo S, Wang X, et al. 2018. Polysaccharides as vaccine adjuvants. Vaccine 36(35):5226−34 doi: 10.1016/j.vaccine.2018.07.040 |
[101] |
Wang L, Barclay T, Song Y, Joyce P, Sakala IG, et al. 2017. Investigation of the biodistribution, breakdown and excretion of delta inulin adjuvant. Vaccine 35:4382−88 doi: 10.1016/j.vaccine.2017.06.045 |
[102] |
Honda-Okubo Y, Saade F, Petrovsky N. 2012. Advax™, a polysaccharide adjuvant derived from delta inulin, provides improved influenza vaccine protection through broad-based enhancement of adaptive immune responses. Vaccine 30:5373−81 doi: 10.1016/j.vaccine.2012.06.021 |
[103] |
Kumar A, Sharma A, Tirpude NV, Padwad Y, Hallan V, et al. 2022. Plant-derived immuno-adjuvants in vaccines formulation: a promising avenue for improving vaccines efficacy against SARS-CoV-2 virus. Pharmacological Reports 74:1238−54 doi: 10.1007/s43440-022-00418-4 |
[104] |
Chen X, Han W, Wang G, Zhao X. 2020. Application prospect of polysaccharides in the development of anti-novel coronavirus drugs and vaccines. International Journal of Biological Macromolecules 164:331−43 doi: 10.1016/j.ijbiomac.2020.07.106 |
[105] |
Wan X, Yin Y, Zhou C, Hou L, Cui Q, et al. 2022. Polysaccharides derived from Chinese medicinal herbs: A promising choice of vaccine adjuvants. Carbohydrate Polymers 276:118739 doi: 10.1016/j.carbpol.2021.118739 |
[106] |
Liu Y, Cecílio NT, Carvalho FC, Roque-Barreira MC, Feizi T. 2015. Glycan microarray analysis of the carbohydrate-recognition specificity of native and recombinant forms of the lectin ArtinM. Data in Brief 5:1035−47 doi: 10.1016/j.dib.2015.11.014 |
[107] |
Padiyappa SD, Avalappa H, Somegowda M, Sridhara S, Venkatesh YP, et al. 2022. Immunoadjuvant and humoral immune responses of garlic (Allium sativum L.) lectins upon systemic and mucosal administration in BALB/c mice. Molecules 27:1375 doi: 10.3390/molecules27041375 |
[108] |
Cheong Y, Kim M, Ahn J, Oh H, Lim J, et al. 2021. Epigallocatechin-3-gallate as a novel vaccine adjuvant. Frontiers in Immunology 12:769088 doi: 10.3389/fimmu.2021.769088 |
[109] |
Ren W, Sun H, Gao GF, Chen J, Sun S, et al. 2020. Recombinant SARS-CoV-2 spike S1-Fc fusion protein induced high levels of neutralizing responses in nonhuman primates. Vaccine 38:5653−58 doi: 10.1016/j.vaccine.2020.06.066 |
[110] |
Tian J, Patel N, Haupt R, Zhou H, Weston S, et al. 2021. SARS-CoV-2 spike glycoprotein vaccine candidate NVX-CoV2373 immunogenicity in baboons and protection in mice. Nature Communications 12(1):372 doi: 10.1038/s41467-020-20653-8 |
[111] |
Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, et al. 2020. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 181(2):281−92 doi: 10.1016/j.cell.2020.02.058 |