[1]

Fang W, Zhao Q, Cai Q, Eziz A, Chen G, et al. 2020. The relationships among structure variables of larch forests in China. Forest Ecosystems 7:61

doi: 10.1186/s40663-020-00273-w
[2]

Fleischer P, Pichler V, Merganič J, Gömöryová E, Homolák M, et al. 2022. Declining Growth Response of Siberian Spruce to Climate Variability on the Taiga-Tundra Border in the Putorana Mountains (Northwest Siberia). Forests 13:131

doi: 10.3390/f13010131
[3]

Smith RH. 2013. Plant Tissue Culture (Third Edition). San Diego: Academic Press. pp. 23-29. https://doi.org/10.1016/C2011-0-04367-3

[4]

Krutovsky KV, Tretyakova IN, Oreshkova NV, Pak ME, Kvitko OV, et al. 2014. Somaclonal variation of haploid in vitro tissue culture obtained from Siberian larch (Larix sibirica Ledeb.) megagametophytes for whole genome de novo sequencing. In Vitro Cellular & Developmental Biology - Plant 50:655−64

doi: 10.1007/s11627-014-9619-z
[5]

Tret’yakova IN, Barsukova AV. 2012. Somatic embryogenesis in in vitro culture of three larch species. Russian Journal of Developmental Biology 43:353−61

doi: 10.1134/S1062360412060082
[6]

Jiang S, Chen X, Gao Y, Cui Y, Kong L, et al. 2021. Plant regeneration via somatic embryogenesis in Larix principis-rupprechtii Mayr. Forests 12:1335

doi: 10.3390/f12101335
[7]

Ogita S, Sasamoto H. 2001. Efficient plant regeneration of Larix Kaempferi. Progress in Biotechnology 18:289−96

doi: 10.1016/S0921-0423%2801%2980084-8
[8]

Song Y, Li S, Bai X, Zhang H. 2018. Screening and verification of the factors influencing somatic embryo maturation of Larix olgensis. Journal of Forestry Research 29:1581−89

doi: 10.1007/s11676-018-0694-6
[9]

Zhang S, Yan S, An P, Cao Q, Wang C, et al. 2021. Embryogenic callus induction from immature zygotic embryos and genetic transformation of Larix kaempferiLarix gmelinii 9. PloS one 16:e0258654

doi: 10.1371/journal.pone.0258654
[10]

Rout GR, Mohapatra A, Jain SM. 2006. Tissue culture of ornamental pot plant: a critical review on present scenario and future prospects. Biotechnology advances 24:531−60

doi: 10.1016/j.biotechadv.2006.05.001
[11]

Lu Z, Li L, Liu Y, Qi L. 1991. Micropropagation in tissue culture of Dahurian Larch. Journal of Northeast Forestry University 2:1−8

doi: 10.1007/BF02874784
[12]

Lin X, Zhang W, Takano H, Takio S, Ono K. 2004. Efficient plant regeneration and micropropagation from callus derived from mature zygotic embryo of Larix gmelinii. Plant Biotechnology 21:159−63

doi: 10.5511/plantbiotechnology.21.159
[13]

Harry IS, Thompson MR, Thorpe TA. 1991. Regeneration of plantlets from mature embryos of western larch. In Vitro Cellular & Developmental Biology - Plant 27:89−98

doi: 10.1007/BF02632134
[14]

Wyman J, Brassard N, Flipo D, Laliberte'e S. 1992. Ploidy level stability of callus tissue, axillary and adventitious shoots of Larix × eurolepis Henry regenerated in vitro. Plant Science 85:189−96

doi: 10.1016/0168-9452(92)90115-3
[15]

SHIN DI, SUL, Ill-Whan P, Young G 1997. Shoot Regeneration from Cambial Tissue Culture of European Larch (Larix decidua). Korean Journal of Plant Tissue Culture 24: 351-5

[16]

Zayova E, Nedev T, Petrova D, Zhiponova M, Kapchina V, et al. 2020. Tissue culture applications of Artemisia annua L. callus for indirect organogenesis and production phytochemical. Plant Tissue Culture and Biotechnology 30:97−106

doi: 10.3329/ptcb.v30i1.47795
[17]

Rathore MS, Patel PR, Siddiqui SA. 2020. Callus culture and plantlet regeneration in date palm (Phoneix dactylifera L.): An important horticultural cash crop for arid and semi-arid horticulture. Physiology and Molecular Biology of Plants 26:391−98

doi: 10.1007/s12298-019-00733-w
[18]

Espinosa-Leal CA, Puente-Garza CA, García-Lara S. 2018. In vitro plant tissue culture: means for production of biological active compounds. Planta 248:1−18

doi: 10.1007/s00425-018-2910-1
[19]

Chandran H, Meena M, Barupal T, Sharma K. 2020. Plant tissue culture as a perpetual source for production of industrially important bioactive compounds. Biotechnology Reports 26:e00450

doi: 10.1016/j.btre.2020.e00450
[20]

Efferth T. 2019. Biotechnology applications of plant callus cultures. Engineering 5:50−59

doi: 10.1016/j.eng.2018.11.006
[21]

Karwasara VS, Jain R, Tomar P, Dixit VK. 2010. Elicitation as yield enhancement strategy for glycyrrhizin production by cell cultures of Abrus precatorius Linn. In Vitro Cellular & Developmental Biology - Plant 46:354−62

doi: 10.1007/s11627-010-9278-7
[22]

Liu X, Zhao Y, Chen X, Dong L, Zheng Y, et al. 2021. Establishment of callus induction system, histological evaluation and taxifolin production of Larch. Plant Cell, Tissue and Organ Culture 147:467−75

doi: 10.1007/s11240-021-02139-7
[23]

Lelu-Walter MA, Pâques LE. 2009. Simplified and improved somatic embryogenesis of hybrid larches (Larix × eurolepis and Larix × marschlinsii). Perspectives for breeding. Annals of Forest Science 66:1

doi: 10.1051/forest/2008079
[24]

Phillips GC, Garda M. 2019. Plant tissue culture media and practices: an overview. In Vitro Cellular & Developmental Biology - Plant 55:242−57

doi: 10.1007/s11627-019-09983-5
[25]

Gantait S, Mahanta M. 2021. Picloram-induced enhanced callus-mediated regeneration, acclimatization, and genetic clonality assessment of gerbera. Journal of Genetic Engineering and Biotechnology 19:175

doi: 10.1186/s43141-021-00269-1
[26]

Youssef NM, Shaaban SA, Ghareeb ZF, Taha LS. 2019. In vitro bulb formation of direct and indirect regeneration of Lilium orientalis cv. "Starfighter" plants. Bulletin of the National Research Centre 43:211

doi: 10.1186/s42269-019-0246-z
[27]

Kadapatti SS, Murthy HN. 2021. Rapid plant regeneration, analysis of genetic fidelity, and neoandrographolide content of micropropagated plants of Andrographis alata (Vahl) Nees. Journal of Genetic Engineering and Biotechnology 19:20

doi: 10.1186/s43141-021-00122-5
[28]

Adsul AA, Chavan JJ, Gaikwad NB, Gurav RV, Dixit GB, Yadav SR. 2019. In vitro regeneration approaches for restoration of Ceropegia mohanramii—an endemic and critically endangered asclepiad. Journal of Genetic Engineering and Biotechnology 17:2

doi: 10.1186/s43141-019-0003-6
[29]

Nowakowska K, Pińkowska A, Siedlecka E, Pacholczak A. 2022. The effect of cytokinins on shoot proliferation, biochemical changes and genetic stability of Rhododendron 'Kazimierz Odnowiciel' in the in vitro cultures. Plant Cell, Tissue and Organ Culture (PCTOC) 149:675−84

doi: 10.1007/s11240-021-02206-z
[30]

Hazubska-Przybył T. 2019. Propagation of Juniper Species by Plant Tissue Culture: A Mini-Review. Forests 10:1028

doi: 10.3390/f10111028
[31]

Samiei L, Davoudi Pahnehkolayi M, Tehranifar A, Karimian Z. 2021. Organic and inorganic elicitors enhance in vitro regeneration of Rosa canina. Journal of Genetic Engineering and Biotechnology 19:60

doi: 10.1186/s43141-021-00166-7
[32]

Fernandes P, Tedesco S, Vieira da Silva I, Santos C, Machado H, et al. 2020. A new clonal propagation protocol develops quality root systems in chestnut. Forests 11:826

doi: 10.3390/f11080826
[33]

Yu L, Li X, Tian H, Liu H, Xiao Y, et al. 2020. Effects of hormones and epigenetic regulation on the callus and adventitious bud induction of Fraxinus mandshurica Rupr. Forests 11:590

doi: 10.3390/f11050590
[34]

Välimäki S, Rusanen M, Pečínková D, Tikkinen M, Aronen T. 2021. Cryopreservation and micropropagation methods for conservation of genetic resources of Ulmus laevis and Ulmus glabra. Forests 12:1121

doi: 10.3390/f12081121
[35]

Liu Z, Jia J, Chen F, Yang F, Zu Y, et al. 2014. Development of an Ionic Liquid-Based Microwave-Assisted Method for the Extraction and Determination of Taxifolin in Different Parts of Larix gmelinii. Molecules 19:19471−90

doi: 10.3390/molecules191219471
[36]

Li K, Han H, Xie Y, Sun X. 2021. Optimization of Factors Influencing Adventitious Rooting in Hybrid Larch. Phyton 90:583−93

doi: 10.32604/phyton.2021.013912