[1] |
Heffernan O. 2017. Sustainability: A meaty issue. Nature 544:S18−S20 doi: 10.1038/544S18a |
[2] |
Springmann M, Clark M, Mason-D’Croz D, Wiebe K, Bodirsky BL, et al. 2018. Options for keeping the food system within environmental limits. Nature 562:519−25 doi: 10.1038/s41586-018-0594-0 |
[3] |
Mottet A, de Haan C, Falcucci A, Tempio G, Opio C, Gerber P. 2017. Livestock: On our plates or eating at our table? A new analysis of the feed/food debate Global Food Security 14:1−8 doi: 10.1016/j.gfs.2017.01.001 |
[4] |
Govoni C, Chiarelli DD, Luciano A, Ottoboni M, Perpelek SN, et al. 2021. Global assessment of natural resources for chicken production. Advances in Water Resources 154:103987 doi: 10.1016/j.advwatres.2021.103987 |
[5] |
Pinotti L, Luciano A, Ottoboni M, Manoni M, Ferrari L, et al. 2021. Recycling food leftovers in feed as opportunity to increase the sustainability of livestock production. Journal of Cleaner Production 294:126290 doi: 10.1016/j.jclepro.2021.126290 |
[6] |
Vandeweyer D, Lievens B, Van Campenhout L. 2020. Identification of bacterial endospores and targeted detection of foodborne viruses in industrially reared insects for food. Nature Food 1:511−16 doi: 10.1038/s43016-020-0120-z |
[7] |
Kavle RR, Pritchard ETM, Bekhit AEDA, Carne A, Agyei D. 2022. Edible insects: A bibliometric analysis and current trends of published studies (1953–2021). International Journal of Tropical Insect Science 42:3335−55 doi: 10.1007/s42690-022-00814-6 |
[8] |
Gravel A, Doyen A. 2020. The use of edible insect proteins in food: Challenges and issues related to their functional properties. Innovative Food Science & Emerging Technologies 59:102272 doi: 10.1016/j.ifset.2019.102272 |
[9] |
de Souza-Vilela J, Andrew NR, Ruhnke I. 2019. Insect protein in animal nutrition. Animal Production Science 59:2029−36 doi: 10.1071/AN19255 |
[10] |
Bessa LW, Pieterse E, Marais J, Hoffman LC. 2020. Why for feed and not for human consumption? The black soldier fly larvae Comprehensive Reviews in Food Science and Food Safety 19:2747−63 doi: 10.1111/1541-4337.12609 |
[11] |
Dutta P, Sahu RK, Dey T, Lahkar MD, Manna P, et al. 2019. Beneficial role of insect-derived bioactive components against inflammation and its associated complications (colitis and arthritis) and cancer. Chemico-Biological Interactions 313:108824 doi: 10.1016/j.cbi.2019.108824 |
[12] |
Pyo SJ, Kang DG, Jung C, Sohn HY. 2020. Anti-thrombotic, anti-oxidant and haemolysis activities of six edible insect species. Foods 9:401 doi: 10.3390/foods9040401 |
[13] |
Gordon R. 1956. Insects of medical importance. British Medical Journal 2:1103 doi: 10.1136/BMJ.2.5001.1103-B |
[14] |
Lee JH, Kim TK, Jeong CH, Yong HI, Cha JY, et al. 2021. Biological activity and processing technologies of edible insects: a review. Food Science and Biotechnology 30:1003−23 doi: 10.1007/s10068-021-00942-8 |
[15] |
Mishyna M, Chen J, Benjamin O. 2020. Sensory attributes of edible insects and insect-based foods – Future outlooks for enhancing consumer appeal. Trends in Food Science & Technology 95:141−48 doi: 10.1016/j.jpgs.2019.11.016 |
[16] |
Vanhonacker F, Van Loo EJ, Gellynck X, Verbeke W. 2013. Flemish consumer attitudes towards more sustainable food choices. Appetite 62:7−16 doi: 10.1016/j.appet.2012.11.003 |
[17] |
Imathiu S. 2020. Benefits and food safety concerns associated with consumption of edible insects. NFS journal 18:1−11 doi: 10.1016/j.nfs.2019.11.002 |
[18] |
Peng BY, Chen Z, Chen J, Zhou X, Wu WM, et al. 2021. Biodegradation of polylactic acid by yellow mealworms (larvae of Tenebrio molitor) via resource recovery: a sustainable approach for waste management. Journal of Hazardous Materials 416:125803 doi: 10.1016/j.jhazmat.2021.125803 |
[19] |
Gao Z, Wang W, Lu X, Zhu F, Liu W, et al. 2019. Bioconversion performance and life table of black soldier fly (Hermetia illucens) on fermented maize straw. Journal of Cleaner Production 230:974−80 doi: 10.1016/j.jclepro.2019.05.074 |
[20] |
Pinotti L, Ottoboni M. 2021. Substrate as insect feed for bio-mass production. Journal of Insects as Food and Feed 7:585−96 doi: 10.3920/JIFF2020.0110 |
[21] |
Ratcliffe N, Azambuja P, Mello CB. 2014. Recent advances in developing insect natural products as potential modern day medicines. Evidence-Based Complementary and Alternative Medicine 2014:904958 doi: 10.1155/2014/904958 |
[22] |
Thomas DC, Tsu CL, Nain RA, Arsat N, Fun SS, Lah NASN. 2021. The role of debridement in wound bed preparation in chronic wound: A narrative review. Annals of medicine and surgery 71:102876 doi: 10.1016/j.amsu.2021.102876 |
[23] |
Ordoñez-Araque R, Egas-Montenegro E. 2021. Edible insects: A food alternative for the sustainable development of the planet. International Journal of Gastronomy and Food Science 23:100304 doi: 10.1016/j.ijgfs.2021.100304 |
[24] |
Ojha S, Bekhit AED, Grune T, Schlüter OK. 2021. Bioavailability of nutrients from edible insects. Current Opinion in Food Science 41:240−48 doi: 10.1016/j.cofs.2021.08.003 |
[25] |
Melgar-Lalanne G, Hernández-Álvarez AJ, Salinas-Castro A. 2019. Edible insects processing: Traditional and innovative technologies. Comprehensive Reviews in Food Science and Food Safety 18:1166−91 doi: 10.1111/1541-4337.12463 |
[26] |
Villaseñor VM, Enriquez-Vara JN, Urías-Silva JE, Mojica L. 2021. Edible insects: techno-functional properties food and feed applications and biological potential. Food Reviews International 38:866−92 doi: 10.1080/87559129.2021.1890116 |
[27] |
Ribeiro JC, Lima RC, Maia MR, Almeida AA, Fonseca AJ, et al. 2019. Impact of defatting freeze-dried edible crickets (Acheta domesticus and Gryllodes sigillatus) on the nutritive value, overall liking and sensory profile of cereal bars. LWT 113:108335 doi: 10.1016/j.lwt.2019.108335 |
[28] |
Baiano A. 2020. Edible insects: An overview on nutritional characteristics, safety, farming, production technologies, regulatory framework, and socio-economic and ethical implications. Trends in Food Science & Technology 100:35−50 doi: 10.1016/j.jpgs.2020.03.040 |
[29] |
Lange KW, Nakamura Y. 2021. Edible insects as future food: chances and challenges. Journal of future foods 1:38−46 doi: 10.1016/j.jfutfo.2021.10.001 |
[30] |
Kim J, Lee HE, Kim Y, Yang J, Lee SJ, et al. 2021. Development of a post-processing method to reduce the unique off-flavor of Allomyrina dichotoma: Yeast fermentation. LWT 150:111940 doi: 10.1016/j.lwt.2021.111940 |
[31] |
Liu R, Gao Z, Snell HA, Ma H. 2020. Food safety concerns and consumer preferences for food safety attributes: Evidence from China. Food Control 112:107157 doi: 10.1016/j.foodcont.2020.107157 |
[32] |
Costello C, Cao L, Gelcich S, Cisneros-Mata MÁ, Free CM, et al. 2020. The future of food from the sea. Nature 588:95−100 doi: 10.1038/s41586-020-2616-y |
[33] |
Bai Z, Schmidt-Traub G, Xu J, Liu L, Jin X, et al. 2020. A food system revolution for China in the post-pandemic world. Resources, Environment and Sustainability 2:100013 doi: 10.1016/j.resenv.2020.100013 |
[34] |
Zhao H, Chang J, Havlík P, van Dijk M, Valin H, et al. 2021. China's future food demand and its implications for trade and environment. Nature Sustainability 4:1042−51 doi: 10.1038/s41893-021-00784-6 |
[35] |
de Boer IJ, van Ittersum MK. 2018. Circularity in agricultural production. Report. Netherlands: Wageningen University & Research. https://edepot.wur.nl/470625 |
[36] |
Barroso FG, de Haro C, Sánchez-Muros M-J, Venegas E, Martínez-Sánchez A, et al. 2014. The potential of various insect species for use as food for fish. Aquaculture 422−423:193−201 doi: 10.1016/j.aquaculture.2013.12.024 |
[37] |
Pieterse E, Erasmus SW, Uushona T, Hoffman LC. 2019. Black soldier fly (Hermetia illucens) pre-pupae meal as a dietary protein source for broiler production ensures a tasty chicken with standard meat quality for every pot. Journal of the Science of Food and Agriculture 99:893−903 doi: 10.1002/jsfa.9261 |
[38] |
Spranghers T, Michiels J, Vrancx J, Ovyn A, Eeckhout M, et al. 2018. Gut antimicrobial effects and nutritional value of black soldier fly (Hermetia illucens L.) prepupae for weaned piglets. Animal Feed Science and Technology 235:33−42 doi: 10.1016/j.anifeedsci.2017.08.012 |
[39] |
Oonincx DGAB, Finke MD. 2021. Nutritional value of insects and ways to manipulate their composition. Journal of Insects as Food and Feed 7:639−59 doi: 10.3920/JIFF2020.0050 |
[40] |
Van Huis A. 2013. Potential of insects as food and feed in assuring food security. Annual Review of Entomology 58:563−83 doi: 10.1146/annurev-ento-120811-153704 |
[41] |
Mertenat A, Diener S, Zurbrügg C. 2019. Black Soldier Fly biowaste treatment-Assessment of global warming potential. Waste Management 84:173−81 doi: 10.1016/j.wasman.2018.11.040 |
[42] |
Behan AA, Loh TC, Fakurazi S, Kaka U, Kaka A, et al. 2019. Effects of supplementation of rumen protected fats on rumen ecology and digestibility of nutrients in sheep. Animals 9:400 doi: 10.3390/ani9070400 |
[43] |
Gautam DP, Rahman S, Borhan MS, Engel C. 2016. The effect of feeding high fat diet to beef cattle on manure composition and gaseous emission from a feedlot pen surface. Journal of Animal Science and Technology 58:22 doi: 10.1186/s40781-016-0104-6 |
[44] |
Madau FA, Arru B, Furesi R, Pulina P. 2020. Insect farming for feed and food production from a circular business model perspective. Sustainability 12:5418 doi: 10.3390/su12135418 |
[45] |
Moon SJ, Lee JW. 2015. Current views on insect feed and its future. Entomological Research 45:283−85 doi: 10.1111/1748-5967.12138 |
[46] |
Geden CJ, Nayduch D, Scott JG, Burgess ER, Gerry AC, et al. 2021. House fly (Diptera: Muscidae): Biology, pest status, current management prospects, and research needs. Journal of Integrated Pest Management 12:39 doi: 10.1093/jipm/pmaa021 |
[47] |
Barragán-Fonsec KB. 2018. Flies are what they eat: Tailoring nutrition of Black Soldier Fly (Hermetia illucens L.) for larval biomass production and fitness. Thesis. Netherlands: Wageningen University & Research. https://doi.org/10.18174/449739 |
[48] |
Surendra KC, Olivier R, Tomberlin JK, Jha R, Khanal SK. 2016. Bioconversion of organic wastes into biodiesel and animal feed via insect farming. Renewable Energy 98:197−202 doi: 10.1016/j.renene.2016.03.022 |
[49] |
Nafisah A, Nahrowi, Mutia R, Jayanegara A. Chemical composition, chitin and cell wall nitrogen content of Black Soldier Fly (Hermetia illucens) larvae after physical and biological treatment. Proc. IOP Conference Series: Materials Science and Engineering, Gothenburg, Sweden, 2019, 546:042028. England: IOP Publishing. https://doi.org/10.1088/1757-899x/546/4/042028 |
[50] |
Zhan S, Fang G, Cai M, Kou Z, Xu J, et al. 2020. Genomic landscape and genetic manipulation of the black soldier fly Hermetia illucens, a natural waste recycler. Cell Research 30:50−60 doi: 10.1038/s41422-019-0252-6 |
[51] |
Murefu T, Macheka L, Musundire R, Manditsera FA. 2019. Safety of wild harvested and reared edible insects: A review. Food Control 101:209−24 doi: 10.1016/j.foodcont.2019.03.003 |
[52] |
Wynants E, Frooninckx L, Van Miert S, Geeraerd A, Claes J, et al. 2019. Risks related to the presence of Salmonella sp. during rearing of mealworms (Tenebrio molitor) for food or feed: Survival in the substrate and transmission to the larvae. Food Control 100:227−34 doi: 10.1016/j.foodcont.2019.01.026 |
[53] |
Nyangena DN, Mutungi C, Imathiu S, Kinyuru J, Affognon H, et al. 2020. Effects of traditional processing techniques on the nutritional and microbiological quality of four edible insect species used for food and feed in East Africa. Foods 9:574 doi: 10.3390/foods9050574 |
[54] |
Muscat A, de Olde EM, Ripoll-Bosch R, van Zanten HHE, Metze TAP, et al. 2021. Principles, drivers and opportunities of a circular bioeconomy. Nature Food 2:561−66 doi: 10.1038/s43016-021-00340-7 |
[55] |
Gold M, Tomberlin JK, Diener S, Zurbrügg C, Mathys A. 2018. Decomposition of biowaste macronutrients, microbes, and chemicals in black soldier fly larval treatment: A review. Waste Management 82:302−18 doi: 10.1016/j.wasman.2018.10.022 |
[56] |
Su CH, Nguyen HC, Bui TL, Huang DL. 2019. Enzyme-assisted extraction of insect fat for biodiesel production. Journal of Cleaner Production 223:436−44 doi: 10.1016/j.jclepro.2019.03.150 |
[57] |
Poveda J. 2021. Insect frass in the development of sustainable agriculture. A review. Agronomy for Sustainable Development 41:5 doi: 10.1007/s13593-020-00656-x |
[58] |
Wang K, Gao P, Geng L, Liu C, Zhang J, et al. 2022. Lignocellulose degradation in Protaetia brevitarsis larvae digestive tract: refining on a tightly designed microbial fermentation production line. Microbiome 10:90 doi: 10.1186/s40168-022-01291-2 |
[59] |
Fu S, Wang D, Xie Z, Zou H, Zheng Y. 2022. Producing insect protein from food waste digestate via black soldier fly larvae cultivation: A promising choice for digestate disposal. The Science of the Total Environment 830:154654 doi: 10.1016/j.scitotenv.2022.154654 |
[60] |
Ganda H, Zannou ET, Kenis M, Abihona HA, Houndonougbo FM, et al. 2022. Effect of four rearing substrates on the yield and the chemical composition of housefly larvae, Musca domestica L. 1758 (Diptera: Muscidae). International Journal of Tropical Insect Science 42:1331−39 doi: 10.1007/s42690-021-00651-z |
[61] |
Wu N, Wang X, Xu X, Cai R, Xie S. 2020. Effects of heavy metals on the bioaccumulation, excretion and gut microbiome of black soldier fly larvae (Hermetia illucens). Ecotoxicology and Environmental Safety 192:110323 doi: 10.1016/j.ecoenv.2020.110323 |
[62] |
Li G, Xia X, Zhao S, Shi M, Liu F, Zhu Y. 2020. The physiological and toxicological effects of antibiotics on an interspecies insect model. Chemosphere 248:126019 doi: 10.1016/j.chemosphere.2020.126019 |
[63] |
Ma Y, Liu Y. 2019. Turning food waste to energy and resources towards a great environmental and economic sustainability: An innovative integrated biological approach. Biotechnology Advances 37:107414 doi: 10.1016/j.biotechadv.2019.06.013 |
[64] |
Qian Y, Song K, Hu T, Ying T. 2018. Environmental status of livestock and poultry sectors in China under current transformation stage. The Science of the Total Environment 622:702−9 doi: 10.1016/j.scitotenv.2017.12.045 |
[65] |
Hu X, Chen Z. 2015. A kind of strengthening method of nicotine-resistant black soldier fly variety. China: CN104285897B |
[66] |
Lu K, Li W, Cheng Y, Ni H, Chen X, et al. 2019. Copper exposure enhances Spodoptera litura larval tolerance to β-cypermethrin. Pesticide Biochemistry and Physiology 160:127−35 doi: 10.1016/j.pestbp.2019.07.010 |
[67] |
Lu K, Cheng Y, Li W, Ni H, Chen X, et al. 2019. Copper-induced H2O2 accumulation confers larval tolerance to xanthotoxin by modulating CYP6B50 expression in Spodoptera litura. Pesticide Biochemistry and Physiology 159:118−26 doi: 10.1016/j.pestbp.2019.06.004 |
[68] |
Liu Z, Najar-Rodriguez AJ, Minor MA, Hedderley DI, Morel PCH. 2020. Mating success of the black soldier fly, Hermetia illucens (Diptera: Stratiomyidae), under four artificial light sources. Journal of Photochemistry and Photobiology B, Biology 205:111815 doi: 10.1016/j.jphotobiol.2020.111815 |
[69] |
Lupi D, Savoldelli S, Leonardi MG, Jucker C. 2019. Feeding in the adult of Hermetia illucens (Diptera Stratiomyidae): Reality or fiction? Journal of Entomological and Acarological Research8046 doi: 10.4081/jear.2019.8046 |
[70] |
Romano N, Fischer H, Egnew N. 2020. Color and sugar preferences of adult black soldier fly (Hermetia illucens) (Dipetera: Stratiomyidae) for feeding and oviposition. Journal of Entomological and Acarological Research 41:1132−37 doi: 10.22438/jeb/41/5(si)/ms_03 |
[71] |
Isibika A, Vinnerås B, Kibazohi O, Zurbrügg C, Lalander C. 2019. Pre-treatment of banana peel to improve composting by black soldier fly (Hermetia illucens (L.), Diptera: Stratiomyidae) larvae. Waste Management 100:151−60 doi: 10.1016/j.wasman.2019.09.017 |
[72] |
Liu C, Wang C, Yao H, Chapman SJ. 2021. Pretreatment is an important method for increasing the conversion efficiency of rice straw by black soldier fly larvae based on the function of gut microorganisms. The Science of the Total Environment 762:144118 doi: 10.1016/j.scitotenv.2020.144118 |
[73] |
Chen X, Chen H, Zhao M, Yang Z, Feng Y. 2022. Insect industrialization and prospect in commerce: A case of China. Entomological Research 52:178−94 doi: 10.1111/1748-5967.12576 |
[74] |
Park SJ, Kim KY, Baik MY, Koh YH. 2022. Sericulture and the edible-insect industry can help humanity survive: insects are more than just bugs, food, or feed. Food Science and Biotechnology 31:657−68 doi: 10.1007/s10068-022-01090-3 |
[75] |
Chantawannakul P. 2020. From entomophagy to entomotherapy. Frontiers in Bioscience-Landmark 25:179−200 doi: 10.2741/4802 |
[76] |
Cooksey CJ. 2019. The red insect dyes: carminic, kermesic and laccaic acids and their derivatives. Biotech Histochem 94:100−7 doi: 10.1080/10520295.2018.1511065 |
[77] |
Triunfo M, Tafi E, Guarnieri A, Scieuzo C, Hahn T, et al. 2021. Insect chitin-based nanomaterials for innovative cosmetics and cosmeceuticals. Cosmetics 8:40 doi: 10.3390/cosmetics8020040 |
[78] |
Zhang X, Ruan J, Ma Z. 2019. Research on history and present situation of medicinal insect resources in China. Chinese Journal of Bioprocess Engineering 17:615−22 |
[79] |
Yang H, Xu X, Ma D, Zhang K, Lai R. 2008. A phospholipase A1 platelet activator from the wasp venom of Vespa magnifica (Smith). Toxicon 51:289−96 doi: 10.1016/j.toxicon.2007.10.003 |
[80] |
Pan Y, Zheng Q, Ni W, Wei Z, Yu S, et al. 2019. Breaking glucose transporter 1/pyruvate kinase M2 glycolytic loop is required for cantharidin inhibition of metastasis in highly metastatic breast cancer. Frontiers in Pharmacology 10:590 doi: 10.3389/fphar.2019.00590 |
[81] |
Wang Y, Yan H, Wang Y, Yang H, Wei L, et al. 2012. Proteomics and transcriptome analysis coupled with pharmacological test reveals the diversity of anti-thrombosis proteins from the medicinal insect, Eupolyphaga sinensis. Biochemistry and Molecular Biology 42:537−44 doi: 10.1016/j.ibmb.2012.04.001 |
[82] |
Liu Y, Shi J, Tong Z, Jia Y, Yang B, et al. 2021. The revitalization of antimicrobial peptides in the resistance era. Pharmacological Research 163:105276 doi: 10.1016/j.phrs.2020.105276 |