[1]
|
Heffernan O. 2017. Sustainability: A meaty issue. Nature 544:S18−S20 doi: 10.1038/544S18a
CrossRef Google Scholar
|
[2]
|
Springmann M, Clark M, Mason-D’Croz D, Wiebe K, Bodirsky BL, et al. 2018. Options for keeping the food system within environmental limits. Nature 562:519−25 doi: 10.1038/s41586-018-0594-0
CrossRef Google Scholar
|
[3]
|
Mottet A, de Haan C, Falcucci A, Tempio G, Opio C, Gerber P. 2017. Livestock: On our plates or eating at our table? A new analysis of the feed/food debate Global Food Security 14:1−8 doi: 10.1016/j.gfs.2017.01.001
CrossRef Google Scholar
|
[4]
|
Govoni C, Chiarelli DD, Luciano A, Ottoboni M, Perpelek SN, et al. 2021. Global assessment of natural resources for chicken production. Advances in Water Resources 154:103987 doi: 10.1016/j.advwatres.2021.103987
CrossRef Google Scholar
|
[5]
|
Pinotti L, Luciano A, Ottoboni M, Manoni M, Ferrari L, et al. 2021. Recycling food leftovers in feed as opportunity to increase the sustainability of livestock production. Journal of Cleaner Production 294:126290 doi: 10.1016/j.jclepro.2021.126290
CrossRef Google Scholar
|
[6]
|
Vandeweyer D, Lievens B, Van Campenhout L. 2020. Identification of bacterial endospores and targeted detection of foodborne viruses in industrially reared insects for food. Nature Food 1:511−16 doi: 10.1038/s43016-020-0120-z
CrossRef Google Scholar
|
[7]
|
Kavle RR, Pritchard ETM, Bekhit AEDA, Carne A, Agyei D. 2022. Edible insects: A bibliometric analysis and current trends of published studies (1953–2021). International Journal of Tropical Insect Science 42:3335−55 doi: 10.1007/s42690-022-00814-6
CrossRef Google Scholar
|
[8]
|
Gravel A, Doyen A. 2020. The use of edible insect proteins in food: Challenges and issues related to their functional properties. Innovative Food Science & Emerging Technologies 59:102272 doi: 10.1016/j.ifset.2019.102272
CrossRef Google Scholar
|
[9]
|
de Souza-Vilela J, Andrew NR, Ruhnke I. 2019. Insect protein in animal nutrition. Animal Production Science 59:2029−36 doi: 10.1071/AN19255
CrossRef Google Scholar
|
[10]
|
Bessa LW, Pieterse E, Marais J, Hoffman LC. 2020. Why for feed and not for human consumption? The black soldier fly larvae Comprehensive Reviews in Food Science and Food Safety 19:2747−63 doi: 10.1111/1541-4337.12609
CrossRef Google Scholar
|
[11]
|
Dutta P, Sahu RK, Dey T, Lahkar MD, Manna P, et al. 2019. Beneficial role of insect-derived bioactive components against inflammation and its associated complications (colitis and arthritis) and cancer. Chemico-Biological Interactions 313:108824 doi: 10.1016/j.cbi.2019.108824
CrossRef Google Scholar
|
[12]
|
Pyo SJ, Kang DG, Jung C, Sohn HY. 2020. Anti-thrombotic, anti-oxidant and haemolysis activities of six edible insect species. Foods 9:401 doi: 10.3390/foods9040401
CrossRef Google Scholar
|
[13]
|
Gordon R. 1956. Insects of medical importance. British Medical Journal 2:1103 doi: 10.1136/BMJ.2.5001.1103-B
CrossRef Google Scholar
|
[14]
|
Lee JH, Kim TK, Jeong CH, Yong HI, Cha JY, et al. 2021. Biological activity and processing technologies of edible insects: a review. Food Science and Biotechnology 30:1003−23 doi: 10.1007/s10068-021-00942-8
CrossRef Google Scholar
|
[15]
|
Mishyna M, Chen J, Benjamin O. 2020. Sensory attributes of edible insects and insect-based foods – Future outlooks for enhancing consumer appeal. Trends in Food Science & Technology 95:141−48 doi: 10.1016/j.jpgs.2019.11.016
CrossRef Google Scholar
|
[16]
|
Vanhonacker F, Van Loo EJ, Gellynck X, Verbeke W. 2013. Flemish consumer attitudes towards more sustainable food choices. Appetite 62:7−16 doi: 10.1016/j.appet.2012.11.003
CrossRef Google Scholar
|
[17]
|
Imathiu S. 2020. Benefits and food safety concerns associated with consumption of edible insects. NFS journal 18:1−11 doi: 10.1016/j.nfs.2019.11.002
CrossRef Google Scholar
|
[18]
|
Peng BY, Chen Z, Chen J, Zhou X, Wu WM, et al. 2021. Biodegradation of polylactic acid by yellow mealworms (larvae of Tenebrio molitor) via resource recovery: a sustainable approach for waste management. Journal of Hazardous Materials 416:125803 doi: 10.1016/j.jhazmat.2021.125803
CrossRef Google Scholar
|
[19]
|
Gao Z, Wang W, Lu X, Zhu F, Liu W, et al. 2019. Bioconversion performance and life table of black soldier fly (Hermetia illucens) on fermented maize straw. Journal of Cleaner Production 230:974−80 doi: 10.1016/j.jclepro.2019.05.074
CrossRef Google Scholar
|
[20]
|
Pinotti L, Ottoboni M. 2021. Substrate as insect feed for bio-mass production. Journal of Insects as Food and Feed 7:585−96 doi: 10.3920/JIFF2020.0110
CrossRef Google Scholar
|
[21]
|
Ratcliffe N, Azambuja P, Mello CB. 2014. Recent advances in developing insect natural products as potential modern day medicines. Evidence-Based Complementary and Alternative Medicine 2014:904958 doi: 10.1155/2014/904958
CrossRef Google Scholar
|
[22]
|
Thomas DC, Tsu CL, Nain RA, Arsat N, Fun SS, Lah NASN. 2021. The role of debridement in wound bed preparation in chronic wound: A narrative review. Annals of medicine and surgery 71:102876 doi: 10.1016/j.amsu.2021.102876
CrossRef Google Scholar
|
[23]
|
Ordoñez-Araque R, Egas-Montenegro E. 2021. Edible insects: A food alternative for the sustainable development of the planet. International Journal of Gastronomy and Food Science 23:100304 doi: 10.1016/j.ijgfs.2021.100304
CrossRef Google Scholar
|
[24]
|
Ojha S, Bekhit AED, Grune T, Schlüter OK. 2021. Bioavailability of nutrients from edible insects. Current Opinion in Food Science 41:240−48 doi: 10.1016/j.cofs.2021.08.003
CrossRef Google Scholar
|
[25]
|
Melgar-Lalanne G, Hernández-Álvarez AJ, Salinas-Castro A. 2019. Edible insects processing: Traditional and innovative technologies. Comprehensive Reviews in Food Science and Food Safety 18:1166−91 doi: 10.1111/1541-4337.12463
CrossRef Google Scholar
|
[26]
|
Villaseñor VM, Enriquez-Vara JN, Urías-Silva JE, Mojica L. 2021. Edible insects: techno-functional properties food and feed applications and biological potential. Food Reviews International 38:866−92 doi: 10.1080/87559129.2021.1890116
CrossRef Google Scholar
|
[27]
|
Ribeiro JC, Lima RC, Maia MR, Almeida AA, Fonseca AJ, et al. 2019. Impact of defatting freeze-dried edible crickets (Acheta domesticus and Gryllodes sigillatus) on the nutritive value, overall liking and sensory profile of cereal bars. LWT 113:108335 doi: 10.1016/j.lwt.2019.108335
CrossRef Google Scholar
|
[28]
|
Baiano A. 2020. Edible insects: An overview on nutritional characteristics, safety, farming, production technologies, regulatory framework, and socio-economic and ethical implications. Trends in Food Science & Technology 100:35−50 doi: 10.1016/j.jpgs.2020.03.040
CrossRef Google Scholar
|
[29]
|
Lange KW, Nakamura Y. 2021. Edible insects as future food: chances and challenges. Journal of future foods 1:38−46 doi: 10.1016/j.jfutfo.2021.10.001
CrossRef Google Scholar
|
[30]
|
Kim J, Lee HE, Kim Y, Yang J, Lee SJ, et al. 2021. Development of a post-processing method to reduce the unique off-flavor of Allomyrina dichotoma: Yeast fermentation. LWT 150:111940 doi: 10.1016/j.lwt.2021.111940
CrossRef Google Scholar
|
[31]
|
Liu R, Gao Z, Snell HA, Ma H. 2020. Food safety concerns and consumer preferences for food safety attributes: Evidence from China. Food Control 112:107157 doi: 10.1016/j.foodcont.2020.107157
CrossRef Google Scholar
|
[32]
|
Costello C, Cao L, Gelcich S, Cisneros-Mata MÁ, Free CM, et al. 2020. The future of food from the sea. Nature 588:95−100 doi: 10.1038/s41586-020-2616-y
CrossRef Google Scholar
|
[33]
|
Bai Z, Schmidt-Traub G, Xu J, Liu L, Jin X, et al. 2020. A food system revolution for China in the post-pandemic world. Resources, Environment and Sustainability 2:100013 doi: 10.1016/j.resenv.2020.100013
CrossRef Google Scholar
|
[34]
|
Zhao H, Chang J, Havlík P, van Dijk M, Valin H, et al. 2021. China's future food demand and its implications for trade and environment. Nature Sustainability 4:1042−51 doi: 10.1038/s41893-021-00784-6
CrossRef Google Scholar
|
[35]
|
de Boer IJ, van Ittersum MK. 2018. Circularity in agricultural production. Report. Netherlands: Wageningen University & Research. https://edepot.wur.nl/470625
|
[36]
|
Barroso FG, de Haro C, Sánchez-Muros M-J, Venegas E, Martínez-Sánchez A, et al. 2014. The potential of various insect species for use as food for fish. Aquaculture 422−423:193−201 doi: 10.1016/j.aquaculture.2013.12.024
CrossRef Google Scholar
|
[37]
|
Pieterse E, Erasmus SW, Uushona T, Hoffman LC. 2019. Black soldier fly (Hermetia illucens) pre-pupae meal as a dietary protein source for broiler production ensures a tasty chicken with standard meat quality for every pot. Journal of the Science of Food and Agriculture 99:893−903 doi: 10.1002/jsfa.9261
CrossRef Google Scholar
|
[38]
|
Spranghers T, Michiels J, Vrancx J, Ovyn A, Eeckhout M, et al. 2018. Gut antimicrobial effects and nutritional value of black soldier fly (Hermetia illucens L.) prepupae for weaned piglets. Animal Feed Science and Technology 235:33−42 doi: 10.1016/j.anifeedsci.2017.08.012
CrossRef Google Scholar
|
[39]
|
Oonincx DGAB, Finke MD. 2021. Nutritional value of insects and ways to manipulate their composition. Journal of Insects as Food and Feed 7:639−59 doi: 10.3920/JIFF2020.0050
CrossRef Google Scholar
|
[40]
|
Van Huis A. 2013. Potential of insects as food and feed in assuring food security. Annual Review of Entomology 58:563−83 doi: 10.1146/annurev-ento-120811-153704
CrossRef Google Scholar
|
[41]
|
Mertenat A, Diener S, Zurbrügg C. 2019. Black Soldier Fly biowaste treatment-Assessment of global warming potential. Waste Management 84:173−81 doi: 10.1016/j.wasman.2018.11.040
CrossRef Google Scholar
|
[42]
|
Behan AA, Loh TC, Fakurazi S, Kaka U, Kaka A, et al. 2019. Effects of supplementation of rumen protected fats on rumen ecology and digestibility of nutrients in sheep. Animals 9:400 doi: 10.3390/ani9070400
CrossRef Google Scholar
|
[43]
|
Gautam DP, Rahman S, Borhan MS, Engel C. 2016. The effect of feeding high fat diet to beef cattle on manure composition and gaseous emission from a feedlot pen surface. Journal of Animal Science and Technology 58:22 doi: 10.1186/s40781-016-0104-6
CrossRef Google Scholar
|
[44]
|
Madau FA, Arru B, Furesi R, Pulina P. 2020. Insect farming for feed and food production from a circular business model perspective. Sustainability 12:5418 doi: 10.3390/su12135418
CrossRef Google Scholar
|
[45]
|
Moon SJ, Lee JW. 2015. Current views on insect feed and its future. Entomological Research 45:283−85 doi: 10.1111/1748-5967.12138
CrossRef Google Scholar
|
[46]
|
Geden CJ, Nayduch D, Scott JG, Burgess ER, Gerry AC, et al. 2021. House fly (Diptera: Muscidae): Biology, pest status, current management prospects, and research needs. Journal of Integrated Pest Management 12:39 doi: 10.1093/jipm/pmaa021
CrossRef Google Scholar
|
[47]
|
Barragán-Fonsec KB. 2018. Flies are what they eat: Tailoring nutrition of Black Soldier Fly (Hermetia illucens L.) for larval biomass production and fitness. Thesis. Netherlands: Wageningen University & Research. https://doi.org/10.18174/449739
|
[48]
|
Surendra KC, Olivier R, Tomberlin JK, Jha R, Khanal SK. 2016. Bioconversion of organic wastes into biodiesel and animal feed via insect farming. Renewable Energy 98:197−202 doi: 10.1016/j.renene.2016.03.022
CrossRef Google Scholar
|
[49]
|
Nafisah A, Nahrowi, Mutia R, Jayanegara A. Chemical composition, chitin and cell wall nitrogen content of Black Soldier Fly (Hermetia illucens) larvae after physical and biological treatment. Proc. IOP Conference Series: Materials Science and Engineering, Gothenburg, Sweden, 2019, 546:042028. England: IOP Publishing. https://doi.org/10.1088/1757-899x/546/4/042028
|
[50]
|
Zhan S, Fang G, Cai M, Kou Z, Xu J, et al. 2020. Genomic landscape and genetic manipulation of the black soldier fly Hermetia illucens, a natural waste recycler. Cell Research 30:50−60 doi: 10.1038/s41422-019-0252-6
CrossRef Google Scholar
|
[51]
|
Murefu T, Macheka L, Musundire R, Manditsera FA. 2019. Safety of wild harvested and reared edible insects: A review. Food Control 101:209−24 doi: 10.1016/j.foodcont.2019.03.003
CrossRef Google Scholar
|
[52]
|
Wynants E, Frooninckx L, Van Miert S, Geeraerd A, Claes J, et al. 2019. Risks related to the presence of Salmonella sp. during rearing of mealworms (Tenebrio molitor) for food or feed: Survival in the substrate and transmission to the larvae. Food Control 100:227−34 doi: 10.1016/j.foodcont.2019.01.026
CrossRef Google Scholar
|
[53]
|
Nyangena DN, Mutungi C, Imathiu S, Kinyuru J, Affognon H, et al. 2020. Effects of traditional processing techniques on the nutritional and microbiological quality of four edible insect species used for food and feed in East Africa. Foods 9:574 doi: 10.3390/foods9050574
CrossRef Google Scholar
|
[54]
|
Muscat A, de Olde EM, Ripoll-Bosch R, van Zanten HHE, Metze TAP, et al. 2021. Principles, drivers and opportunities of a circular bioeconomy. Nature Food 2:561−66 doi: 10.1038/s43016-021-00340-7
CrossRef Google Scholar
|
[55]
|
Gold M, Tomberlin JK, Diener S, Zurbrügg C, Mathys A. 2018. Decomposition of biowaste macronutrients, microbes, and chemicals in black soldier fly larval treatment: A review. Waste Management 82:302−18 doi: 10.1016/j.wasman.2018.10.022
CrossRef Google Scholar
|
[56]
|
Su CH, Nguyen HC, Bui TL, Huang DL. 2019. Enzyme-assisted extraction of insect fat for biodiesel production. Journal of Cleaner Production 223:436−44 doi: 10.1016/j.jclepro.2019.03.150
CrossRef Google Scholar
|
[57]
|
Poveda J. 2021. Insect frass in the development of sustainable agriculture. A review. Agronomy for Sustainable Development 41:5 doi: 10.1007/s13593-020-00656-x
CrossRef Google Scholar
|
[58]
|
Wang K, Gao P, Geng L, Liu C, Zhang J, et al. 2022. Lignocellulose degradation in Protaetia brevitarsis larvae digestive tract: refining on a tightly designed microbial fermentation production line. Microbiome 10:90 doi: 10.1186/s40168-022-01291-2
CrossRef Google Scholar
|
[59]
|
Fu S, Wang D, Xie Z, Zou H, Zheng Y. 2022. Producing insect protein from food waste digestate via black soldier fly larvae cultivation: A promising choice for digestate disposal. The Science of the Total Environment 830:154654 doi: 10.1016/j.scitotenv.2022.154654
CrossRef Google Scholar
|
[60]
|
Ganda H, Zannou ET, Kenis M, Abihona HA, Houndonougbo FM, et al. 2022. Effect of four rearing substrates on the yield and the chemical composition of housefly larvae, Musca domestica L. 1758 (Diptera: Muscidae). International Journal of Tropical Insect Science 42:1331−39 doi: 10.1007/s42690-021-00651-z
CrossRef Google Scholar
|
[61]
|
Wu N, Wang X, Xu X, Cai R, Xie S. 2020. Effects of heavy metals on the bioaccumulation, excretion and gut microbiome of black soldier fly larvae (Hermetia illucens). Ecotoxicology and Environmental Safety 192:110323 doi: 10.1016/j.ecoenv.2020.110323
CrossRef Google Scholar
|
[62]
|
Li G, Xia X, Zhao S, Shi M, Liu F, Zhu Y. 2020. The physiological and toxicological effects of antibiotics on an interspecies insect model. Chemosphere 248:126019 doi: 10.1016/j.chemosphere.2020.126019
CrossRef Google Scholar
|
[63]
|
Ma Y, Liu Y. 2019. Turning food waste to energy and resources towards a great environmental and economic sustainability: An innovative integrated biological approach. Biotechnology Advances 37:107414 doi: 10.1016/j.biotechadv.2019.06.013
CrossRef Google Scholar
|
[64]
|
Qian Y, Song K, Hu T, Ying T. 2018. Environmental status of livestock and poultry sectors in China under current transformation stage. The Science of the Total Environment 622:702−9 doi: 10.1016/j.scitotenv.2017.12.045
CrossRef Google Scholar
|
[65]
|
Hu X, Chen Z. 2015. A kind of strengthening method of nicotine-resistant black soldier fly variety. China: CN104285897B
|
[66]
|
Lu K, Li W, Cheng Y, Ni H, Chen X, et al. 2019. Copper exposure enhances Spodoptera litura larval tolerance to β-cypermethrin. Pesticide Biochemistry and Physiology 160:127−35 doi: 10.1016/j.pestbp.2019.07.010
CrossRef Google Scholar
|
[67]
|
Lu K, Cheng Y, Li W, Ni H, Chen X, et al. 2019. Copper-induced H2O2 accumulation confers larval tolerance to xanthotoxin by modulating CYP6B50 expression in Spodoptera litura. Pesticide Biochemistry and Physiology 159:118−26 doi: 10.1016/j.pestbp.2019.06.004
CrossRef Google Scholar
|
[68]
|
Liu Z, Najar-Rodriguez AJ, Minor MA, Hedderley DI, Morel PCH. 2020. Mating success of the black soldier fly, Hermetia illucens (Diptera: Stratiomyidae), under four artificial light sources. Journal of Photochemistry and Photobiology B, Biology 205:111815 doi: 10.1016/j.jphotobiol.2020.111815
CrossRef Google Scholar
|
[69]
|
Lupi D, Savoldelli S, Leonardi MG, Jucker C. 2019. Feeding in the adult of Hermetia illucens (Diptera Stratiomyidae): Reality or fiction? Journal of Entomological and Acarological Research8046 doi: 10.4081/jear.2019.8046
CrossRef Google Scholar
|
[70]
|
Romano N, Fischer H, Egnew N. 2020. Color and sugar preferences of adult black soldier fly (Hermetia illucens) (Dipetera: Stratiomyidae) for feeding and oviposition. Journal of Entomological and Acarological Research 41:1132−37 doi: 10.22438/jeb/41/5(si)/ms_03
CrossRef Google Scholar
|
[71]
|
Isibika A, Vinnerås B, Kibazohi O, Zurbrügg C, Lalander C. 2019. Pre-treatment of banana peel to improve composting by black soldier fly (Hermetia illucens (L.), Diptera: Stratiomyidae) larvae. Waste Management 100:151−60 doi: 10.1016/j.wasman.2019.09.017
CrossRef Google Scholar
|
[72]
|
Liu C, Wang C, Yao H, Chapman SJ. 2021. Pretreatment is an important method for increasing the conversion efficiency of rice straw by black soldier fly larvae based on the function of gut microorganisms. The Science of the Total Environment 762:144118 doi: 10.1016/j.scitotenv.2020.144118
CrossRef Google Scholar
|
[73]
|
Chen X, Chen H, Zhao M, Yang Z, Feng Y. 2022. Insect industrialization and prospect in commerce: A case of China. Entomological Research 52:178−94 doi: 10.1111/1748-5967.12576
CrossRef Google Scholar
|
[74]
|
Park SJ, Kim KY, Baik MY, Koh YH. 2022. Sericulture and the edible-insect industry can help humanity survive: insects are more than just bugs, food, or feed. Food Science and Biotechnology 31:657−68 doi: 10.1007/s10068-022-01090-3
CrossRef Google Scholar
|
[75]
|
Chantawannakul P. 2020. From entomophagy to entomotherapy. Frontiers in Bioscience-Landmark 25:179−200 doi: 10.2741/4802
CrossRef Google Scholar
|
[76]
|
Cooksey CJ. 2019. The red insect dyes: carminic, kermesic and laccaic acids and their derivatives. Biotech Histochem 94:100−7 doi: 10.1080/10520295.2018.1511065
CrossRef Google Scholar
|
[77]
|
Triunfo M, Tafi E, Guarnieri A, Scieuzo C, Hahn T, et al. 2021. Insect chitin-based nanomaterials for innovative cosmetics and cosmeceuticals. Cosmetics 8:40 doi: 10.3390/cosmetics8020040
CrossRef Google Scholar
|
[78]
|
Zhang X, Ruan J, Ma Z. 2019. Research on history and present situation of medicinal insect resources in China. Chinese Journal of Bioprocess Engineering 17:615−22
Google Scholar
|
[79]
|
Yang H, Xu X, Ma D, Zhang K, Lai R. 2008. A phospholipase A1 platelet activator from the wasp venom of Vespa magnifica (Smith). Toxicon 51:289−96 doi: 10.1016/j.toxicon.2007.10.003
CrossRef Google Scholar
|
[80]
|
Pan Y, Zheng Q, Ni W, Wei Z, Yu S, et al. 2019. Breaking glucose transporter 1/pyruvate kinase M2 glycolytic loop is required for cantharidin inhibition of metastasis in highly metastatic breast cancer. Frontiers in Pharmacology 10:590 doi: 10.3389/fphar.2019.00590
CrossRef Google Scholar
|
[81]
|
Wang Y, Yan H, Wang Y, Yang H, Wei L, et al. 2012. Proteomics and transcriptome analysis coupled with pharmacological test reveals the diversity of anti-thrombosis proteins from the medicinal insect, Eupolyphaga sinensis. Biochemistry and Molecular Biology 42:537−44 doi: 10.1016/j.ibmb.2012.04.001
CrossRef Google Scholar
|
[82]
|
Liu Y, Shi J, Tong Z, Jia Y, Yang B, et al. 2021. The revitalization of antimicrobial peptides in the resistance era. Pharmacological Research 163:105276 doi: 10.1016/j.phrs.2020.105276
CrossRef Google Scholar
|