[1]

Gauthier S, Webster C, Servaes S, Morais JA, Rosa-Neto P. 2022. World Alzheimer Report 2022: Life after diagnosis: Navigating treatment, care and support. Executive summary. London, England: Alzheimer's Disease International. pp. 25−26. www.alzint.org/u/World-Alzheimer-Report-2022.pdf

[2]

Siva N. 2021. New global initiative to tackle Alzheimer's disease. Lancet 397:568−69

doi: 10.1016/S0140-6736(21)00364-0
[3]

Qian X, Hamad B, Dias-Lalcaca G. 2015. The Alzheimer disease market. Nature Reviews Drug Discovery 14:675−76

doi: 10.1038/nrd4749
[4]

Song J, Malampati S, Zeng Y, Durairajan S, Yang C, et al. 2020. A small molecule transcription factor EB activator ameliorates beta-amyloid precursor protein and Tau pathology in Alzheimer's disease models. Aging cell 19:e13069

doi: 10.1111/acel.13069
[5]

Xu J, Liu J, Li Q, Mi Y, Zhou D, et al. 2021. Pterostilbene alleviates Aβ1-42-induced cognitive dysfunction via inhibition of oxidative stress by activating Nrf2 signaling pathway. Molecular Nutrition & Food Research 65:2000711

doi: 10.1002/mnfr.202000711
[6]

Xu X, Teng Y, Zou J, Ye Y, Song H, et al. 2020. Effects of lycopene on vascular remodeling through the LXR–PI3K–AKT signaling pathway in APP/PS1 mice. Biochemical and Biophysical Research Communications 526:699−705

doi: 10.1016/j.bbrc.2020.02.063
[7]

Mori T, Koyama N, Yokoo T, Segawa T, Maeda M, et al. 2020. Gallic acid is a dual α/β-secretase modulator that reverses cognitive impairment and remediates pathology in Alzheimer mice. The Journal of Biological Chemistry 295:16251−66

doi: 10.1074/jbc.RA119.012330
[8]

Ye C, Liang Y, Chen Y, Xiong Y, She Y, et al. 2021. Berberine improves cognitive impairment by simultaneously impacting cerebral blood flow and β-amyloid accumulation in an APP/tau/PS1 mouse model of Alzheimer’ s disease. Cells 10:1161

doi: 10.3390/cells10051161
[9]

Hussien HM, Abd-Elmegied A, Ghareeb DA, Hafez HS, Ahmed HEA, et al. 2018. Neuroprotective effect of berberine against environmental heavy metals-induced neurotoxicity and Alzheimer's-like disease in rats. Food and Chemical Toxicology 111:432−44

doi: 10.1016/j.fct.2017.11.025
[10]

Yang Y, Li S, Huang H, Lv J, Chen S, et al. 2020. Comparison of the protective effects of ginsenosides Rb1 and Rg1 on improving cognitive deficits in SAMP8 mice based on anti-neuroinflammation mechanism. Frontiers in Pharmacology 11:834

doi: 10.3389/fphar.2020.00834
[11]

Kidd M. 1963. Paired helical filaments in electron microscopy of Alzheimer's disease. Nature 197:192−93

doi: 10.1038/197192b0
[12]

Terry RD. 1963. The fine structure of neurofibrillary tangles in Alzheimer's disease. Journal of Neuropathology & Experimental Neurology 22:629−42

doi: 10.1097/00005072-196310000-00005
[13]

Liu P, Xie Y, Meng X, Kang J. 2019. History and progress of hypotheses and clinical trials for Alzheimer’s disease. Signal Transduction and Targeted Therapy 4:29

doi: 10.1038/s41392-019-0063-8
[14]

Lee JH, Yang D, Goulbourne CN, Im E, Stavrides P, et al. 2022. Faulty autolysosome acidification in Alzheimer’s disease mouse models induces autophagic build-up of Aβ in neurons, yielding senile plaques. Nature Neuroscience 25:688−701

doi: 10.1038/s41593-022-01084-8
[15]

Castillo E, Leon J, Mazzei G, Abolhassani N, Haruyama N, et al. 2017. Comparative profiling of cortical gene expression in Alzheimer’s disease patients and mouse models demonstrates a link between amyloidosis and neuroinflammation. Scientific Reports 7:17762

doi: 10.1038/s41598-017-17999-3
[16]

Lee WH, Loo CY, Bebawy M, Luk F, Mason RS, et al. 2013. Curcumin and its Derivatives: Their Application in Neuropharmacology and Neuroscience in the 21st Century. Current Neuropharmacology 11:338−78

doi: 10.2174/1570159X11311040002
[17]

Goozee KG, Shah TM, Sohrabi HR, Rainey-Smith SR, Brown B, et al. 2016. Examining the potential clinical value of curcumin in the prevention and diagnosis of Alzheimer's disease. The British Journal of Nutrition 115:449−65

doi: 10.1017/S0007114515004687
[18]

Tiwari SK, Agarwal S, Seth B, Yadav A, Nair S, et al. 2014. Curcumin-loaded nanoparticles potently induce adult neurogenesis and reverse cognitive deficits in Alzheimer's disease model via canonical Wnt/β-catenin pathway. ACS Nano 8:76−103

doi: 10.1021/nn405077y
[19]

Wang H, Sui H, Zheng Y, Jiang Y, Shi Y, et al. 2019. Curcumin-primed exosomes potently ameliorate cognitive function in AD mice by inhibiting hyperphosphorylation of the Tau protein through the AKT/GSK-3β pathway. Nanoscale 11:7481−96

doi: 10.1039/C9NR01255A
[20]

Gong J, Sun D. 2022. Study on the mechanism of curcumin to reduce the inflammatory response of temporal lobe in Alzheimer's disease by regulating miR-146a. Minerva Medica 133:109−18

[21]

Singh AP, Singh R, Verma SS, Rai V, Kaschula CH, et al. 2019. Health benefits of resveratrol: Evidence from clinical studies. Medicinal Research Reviews 39:1851−91

doi: 10.1002/med.21565
[22]

Moussa C, Hebron M, Huang X, Ahn J, Rissman RA, et al. 2017. Resveratrol regulates neuro-inflammation and induces adaptive immunity in Alzheimer's disease. Journal of Neuroinflammation 14:1

doi: 10.1186/s12974-016-0779-0
[23]

Sarroca S, Gatius A, Rodríguez-Farré E, Vilchez D, Pallàs M, et al. 2021. Resveratrol confers neuroprotection against high-fat diet in a mouse model of Alzheimer's disease via modulation of proteolytic mechanisms. The Journal of Nutritional Biochemistry 89:108569

doi: 10.1016/j.jnutbio.2020.108569
[24]

Drygalski K, Fereniec E, Koryciński K, Chomentowski A, Kiełczewska A, et al. 2018. Resveratrol and Alzheimer's disease. From molecular pathophysiology to clinical trials. Experimental Gerontology 113:36−47

doi: 10.1016/j.exger.2018.09.019
[25]

Abozaid OAR, Sallam MW, El-Sonbaty S, Aziza S, Emad B, et al. 2022. Resveratrol-selenium nanoparticles alleviate neuroinflammation and neurotoxicity in a rat model of Alzheimer’s disease by regulating Sirt1/miRNA-134/GSK3β expression. Biological Trace Element Research 200:5104−14

doi: 10.1007/s12011-021-03073-7
[26]

Li C, Wang N, Zheng G, Yang L. 2021. Oral administration of resveratrol- selenium-peptide nanocomposites alleviates Alzheimer’s disease-like pathogenesis by inhibiting Aβ aggregation and regulating gut microbiota. ACS Applied Materials & Interfaces 13:46406−20

doi: 10.1021/acsami.1c14818
[27]

Przybylska, S. 2020. Lycopene − a bioactive carotenoid offering multiple health benefits: a review. International Journal of Food Science & Technology 94:11−32

doi: 10.1111/ijfs.14260
[28]

Sachdeva AK, Chopra K. 2015. Lycopene abrogates Aβ(1–42)-mediated neuroinflammatory cascade in an experimental model of Alzheimer's disease. The Journal of Nutritional Biochemistry 26:736−44

doi: 10.1016/j.jnutbio.2015.01.012
[29]

Fang Y, Ou S, Wu T, Zhou L, Tang H, et al. 2020. Lycopene alleviates oxidative stress via the PI3K/Akt/Nrf2 pathway in a cell model of Alzheimer's disease. PeerJ 8:e9308

doi: 10.7717/peerj.9308
[30]

Xu ZG, Liu C, Wang R, Gao XR, Hao C, et al. 2021. A combination of lycopene and human amniotic epithelial cells can ameliorate cognitive deficits and suppress neuroinflammatory signaling by choroid plexus in Alzheimer's disease rat. The Journal of Nutritional Biochemistry 88:108558

doi: 10.1016/j.jnutbio.2020.108558
[31]

Wang R, Xu ZG, Li YF, Li WJ, Gao XR, et al. 2021. Lycopene can modulate the LRP1 and RAGE transporters expression at the choroid plexus in Alzheimer's disease rat. Journal of Functional Foods 85:104644

doi: 10.1016/j.jff.2021.104644
[32]

Ratto F, Franchini F, Musicco M, Caruso G, di Santo SG. 2022. A narrative review on the potential of tomato and lycopene for the prevention of Alzheimer’s disease and other dementias. Critical Reviews in Food Science and Nutrition Nutrition 62:4970−81

doi: 10.1080/10408398.2021.1880363
[33]

Bai J, Zhang Y, Tang C, Hou Y, Ai X, et al. 2021. Gallic acid: Pharmacological activities and molecular mechanisms involved in inflammation-related diseases. Biomedicine & Pharmacotherapy 133:110985

doi: 10.1016/j.biopha.2020.110985
[34]

Ogunlade B, Adelakun SA, Agie JA. 2022. Nutritional supplementation of gallic acid ameliorates Alzheimer-type hippocampal neurodegeneration and cognitive impairment induced by aluminum chloride exposure in adult wistar rats. Drug and Chemical Toxicology 45:651−62

doi: 10.1080/01480545.2020.1754849
[35]

Payne A, Nahashon S, Taka E, Adinew GM, Soliman KFA. 2022. Epigallocatechin-3-Gallate (EGCG): New Therapeutic Perspectives for Neuroprotection, Aging, and Neuroinflammation for the Modern Age. Biomolecules. 12:371

doi: 10.3390/biom12030371
[36]

Araújo AR, Correa J, Dominguez-Arca V, Reis RL, Fernandez-Megia E, et al. 2021. Functional gallic acid-based dendrimers as synthetic nanotools to remodel amyloid-β-42 into noncytotoxic forms. ACS Applied Materials & Interfaces 13:59673−82

doi: 10.1021/acsami.1c17823
[37]

Wang Y, Tong Q, Ma S, Zhao Z, Pan L, et al. 2021. Oral berberine improves brain dopa/dopamine levels to ameliorate Parkinson’s disease by regulating gut microbiota. Signal Transduction and Targeted Therapy 6:77

doi: 10.1038/s41392-020-00456-5
[38]

Zhang C, Li C, Chen S, Li Z, Jia X, et al. 2017. Berberine protects against 6-OHDA-induced neurotoxicity in PC12 cells and zebrafish through hormetic mechanisms involving PI3K/AKT/Bcl-2 and Nrf2/HO-1 pathways. Redox Biology 11:1−11

doi: 10.1016/j.redox.2016.10.019
[39]

Živančević K, Baralić K, Bozic D, Miljaković EA, Djordjevic AB, et al. 2022. Involvement of environmentally relevant toxic metal mixture in Alzheimer's disease pathway alteration and protective role of berberine: Bioinformatics analysis and toxicogenomic screening. Food and Chemical Toxicology 161:112839

doi: 10.1016/j.fct.2022.112839
[40]

Wong LR, Tan EA, Lim MEJ, Shen W, Lian X, et al. 2021. Functional effects of berberine in modulating mitochondrial dysfunction and inflammatory response in the respective amyloidogenic cells and activated microglial cells-In vitro models simulating Alzheimer's disease pathology. Life Sciences 282:119824

doi: 10.1016/j.lfs.2021.119824
[41]

Abo El-Enin HA, Elkomy MH, Naguib IA, Ahmed MF, Alsaidan OA, et al. 2022. Lipid Nanocarriers Overlaid with Chitosan for Brain Delivery of Berberine via the Nasal Route. Pharmaceuticals. 15:281

doi: 10.3390/ph15030281
[42]

Wang L, Zhou B, Li Y, Jiang Q, Cong W, et al. 2022. Lactoferrin modification of berberine nanoliposomes enhances the neuroprotective effects in a mouse model of Alzheimer's disease. Neural Regeneration Research 18:226−32

doi: 10.4103/1673-5374.344841
[43]

Chen YY, Liu QP, An P, Jia M, Luan X, et al. 2022. Ginsenoside Rd: A promising natural neuroprotective agent. Phytomedicine 95:153883

doi: 10.1016/j.phymed.2021.153883
[44]

Quan Q, Li X, Feng J, Hou J, Li M, et al. 2020. Ginsenoside Rg1 reduces β-amyloid levels by inhibiting CDΚ5-induced PPARγ phosphorylation in a neuron model of Alzheimer's disease. Molecular Medicine Reports 22:3277−88

doi: 10.3892/mmr.2020.11424
[45]

Yang Y, Wang L, Zhang C, Guo Y, Li J, et al. 2022. Ginsenoside Rg1 improves Alzheimer's disease by regulating oxidative stress, apoptosis, and neuroinflammation through Wnt/GSK-3β/β-catenin signaling pathway. Chemical Biology & Drug Design 99:884−96

doi: 10.1111/cbdd.14041
[46]

Zhu L, Hou X, Che X, Zhou T, Liu X, et al. 2021. Pseudoginsenoside-F11 attenuates cognitive dysfunction and tau phosphorylation in sporadic Alzheimer's disease rat model. Acta Pharmacologica Sinica 42:1401−8

doi: 10.1038/s41401-020-00562-8
[47]

Lv J, Lu C, Jiang N, Wang H, Huang H, et al. 2021. Protective effect of ginsenoside Rh2 on scopolamine-induced memory deficits through regulation of cholinergic transmission, oxidative stress and the ERK-CREB-BDNF signaling pathway. Phytotherapy Research 35:337−45

doi: 10.1002/ptr.6804
[48]

Zeng Z, Xu J, Zheng W. 2017. Artemisinin protects PC12 cells against β-amyloid-induced apoptosis through activation of the ERK1/2 signaling pathway. Redox Biology 12:625−33

doi: 10.1016/j.redox.2017.04.003
[49]

Zhang W, Hua H, Guo Y, Cheng Y, Pi F, et al. 2020. Torularhodin from Sporidiobolus pararoseus attenuates D-galactose/AlCl3-induced cognitive impairment, oxidative stress, and neuroinflammation via the Nrf2/NF-κB pathway. Journal of Agricultural and Food Chemistry 68:6604−14

doi: 10.1021/acs.jafc.0c01892
[50]

Ruankham W, Suwanjang W, Wongchitrat P, Prachayasittikul V, Prachayasittikul S, et al. 2021. Sesamin and sesamol attenuate H2O2-induced oxidative stress on human neuronal cells via the SIRT1-SIRT3-FOXO3a signaling pathway. Nutritional Neuroscience 24:90−101

doi: 10.1080/1028415X.2019.1596613
[51]

Gagliardi S, Morassa C, Stivaktakis P, Pandini C, Tinelli V, et al. 2020. Curcumin formulations and trials: what’s new in neurological diseases. Molecules 25:5389

doi: 10.3390/molecules25225389
[52]

Lv H, Wang Y, Yang X, Ling G, Zhang P. 2022. Application of curcumin nanoformulations in Alzheimer’s disease: prevention, diagnosis and treatment. Nutritional Neuroscience

doi: 10.1080/1028415X.2022.2084550
[53]

Anton SD, Ebner N, Dzierzewski JM, Zlatar ZZ, Gurka MJ, et al. 2018. Effects of 90 days of resveratrol supplementation on cognitive function in elders: A pilot study. Journal of Alternative and Complementary Medicine 24:725−32

doi: 10.1089/acm.2017.0398
[54]

Turner RS, Thomas RG, Craft S, van Dyck CH, Mintzer J, et al. 2015. A randomized, double-blind, placebo-controlled trial of resveratrol for Alzheimer disease. Neurology 85:1381−91

doi: 10.1212/WNL.0000000000002035
[55]

Tawfik MS, Abdel-Ghaffar KA, Gamal AY, El-Demerdash FH, Gad HA. 2019. Lycopene solid lipid microparticles with enhanced effect on gingival crevicular fluid protein carbonyl as a biomarker of oxidative stress in patients with chronic periodontitis. Journal of Liposome Research 29:375−82

doi: 10.1080/08982104.2019.1566243
[56]

Lane JA, Er V, Avery KNL, Horwood J, Cantwell M, et al. 2018. ProDiet: A phase II randomized placebo-controlled trial of green tea catechins and lycopene in men at increased risk of prostate cancer. Cancer Prevention Research 11:687−96

doi: 10.1158/1940-6207.CAPR-18-0147
[57]

Russo C, Ferro Y, Maurotti S, Salvati MA, Mazza E, et al. 2020. Lycopene and bone: an in vitro investigation and a pilot prospective clinical study. Journal of Translational Medicine 18:43

doi: 10.1186/s12967-020-02238-7
[58]

Ferk F, Kundi M, Brath H, Szekeres T, Al-Serori H, et al. 2018. Gallic acid improves health-associated biochemical parameters and prevents oxidative damage of DNA in type 2 diabetes patients: results of a placebo-controlled pilot study. Molecular Nutrition & Food Research 62:1700482

doi: 10.1002/mnfr.201700482
[59]

Kozan A, Guner R, Akyol M. 2020. A retrospective assessment and comparison of the effectiveness of benzoyl peroxide; the combination of topical niacinamide, gallic acid, and lauric acid; and the combination of benzoyl peroxide and erythromycin in acne vulgaris. Dermatologic Therapy 33:e13534

doi: 10.1111/dth.13534
[60]

Li M, Liu Y, Qiu Y, Zhang J, Zhang Y, et al. 2021. The effect of berberine adjunctive treatment on glycolipid metabolism in patients with schizophrenia: A randomized, double-blind, placebo-controlled clinical trial. Psychiatry Research 300:113899

doi: 10.1016/j.psychres.2021.113899
[61]

Zhao JV, Yeung WF, Chan YH, Vackova D, Leung JYY, et al. 2021. Effect of berberine on cardiovascular disease risk factors: a mechanistic randomized controlled trial. Nutrients 13:2550

doi: 10.3390/nu13082550
[62]

Wang Z, Liu R, Chen L, Wang H, Zhou M, et al. 2021. Pharmacokinetics of ginsenoside Rh2, the major anticancer ingredient of ginsenoside H dripping pills, in healthy subjects. Clinical Pharmacology in Drug Development 10:669−74

doi: 10.1002/cpdd.877
[63]

van der Pluijm RW, Tripura R, Hoglund RM, Phyo AP, Lek D, et al. 2020. Triple artemisinin-based combination therapies versus artemisinin-based combination therapies for uncomplicated Plasmodium falciparum malaria: a multicentre, open-label, randomised clinical trial. Lancet 395:1345−60

doi: 10.1016/S0140-6736(20)30552-3
[64]

Mussagy CU, Gonzalez-Miquel M, Santos-Ebinuma VC, Pereira JFB. 2021. Microbial torularhodin − a comprehensive review. Critical Reviews in Biotechnology

doi: 10.1080/07388551.2022.2041540