[1]

Davila-Velderrain J, Martinez-Garcia JC, Alvarez-Buylla ER. 2016. Dynamic network modelling to understand flowering transition and floral patterning. Journal of Experimental Botany 67:2565−72

doi: 10.1093/jxb/erw123
[2]

Blümel M, Dally N, Jung C. 2015. Flowering time regulation in crops—what did we learn from Arabidopsis? Current Opinion in Biotechnology 32:121−29

doi: 10.1016/j.copbio.2014.11.023
[3]

Foucher F, Chevalier M, Corre C, Soufflet-Freslon V, Legeai F, et al. 2008. New resources for studying the rose flowering process. Genome 51:827−37

doi: 10.1139/G08-067
[4]

Xing W, Wang Z, Wang X, Bao M, Ning G. 2014. Over-expression of an FT homolog from Prunus mume reduces juvenile phase and induces early flowering in rugosa rose. Scientia Horticulturae 172:68−72

doi: 10.1016/j.scienta.2014.03.050
[5]

Dubois A, Carrere S, Raymond O, Pouvreau B, Cottret L, et al. 2012. Transcriptome database resource and gene expression atlas for the rose. BMC Genomics 13:638

doi: 10.1186/1471-2164-13-638
[6]

Randoux M, Jeauffre J, Thouroude T, Vasseur F, Hamama, et al. 2012. Gibberellins regulate the transcription of the continuous flowering regulator, RoKSN, a rose TFL1 homologue. Journal of Experimental Botany 63:6543−54

doi: 10.1093/jxb/ers310
[7]

Silva LDS, Cavalcante ÍHL, da Cunha JG, Lobo JT, Carreiro DA, et al. 2022. Organic acids allied with paclobutrazol modify mango tree 'Keitt' flowering. Revista Brasileira de Fruticultura 44:e003

doi: 10.1590/0100-29452022003
[8]

Cho LH, Pasriga R, Yoon J, Jeon JS, An G. 2018. Roles of sugars in controlling flowering time. Journal of Plant Biology 61:121−30

doi: 10.1007/s12374-018-0081-z
[9]

Cho LH, Yoon J, An G. 2017. The control of flowering time by environmental factors. The Plant Journal 90:708−19

doi: 10.1111/tpj.13461
[10]

Emami H, Kempken F. 2019. PRECOCIOUS 1 (POCO 1), a mitochondrial pentatricopeptide repeat protein affects flowering time in Arabidopsis thaliana. The Plant Journal 100:265−78

doi: 10.1111/tpj.14441
[11]

Guan H, Huang X, Zhu Y, Xie B, Liu H, et al. 2021. Identification of DELLA Genes and key stage for GA sensitivity in bolting and flowering of flowering Chinese cabbage. International Journal of Molecular Sciences 22:12092

doi: 10.3390/ijms222212092
[12]

Wang Y, Li B, Li Y, Du W, Zhang Y, et al. 2022. Application of exogenous auxin and gibberellin regulates the bolting of lettuce (Lactuca sativa L.). Open Life Sciences 17:438−46

doi: 10.1515/biol-2022-0043
[13]

Meng X, Li Y, Yuan Y, Zhang Y, Li H, et al. 2020. The regulatory pathways of distinct flowering characteristics in Chinese jujube. Horticulture Research 7:123

doi: 10.1038/s41438-020-00344-7
[14]

Cao S, Luo X, Xu D, Tian X, Song J, et al. 2021. Genetic architecture underlying light and temperature mediated flowering in Arabidopsis, rice, and temperate cereals. The New phytologist 230:1731−45

doi: 10.1111/nph.17276
[15]

Luo X, He Y. 2020. Experiencing winter for spring flowering: A molecular epigenetic perspective on vernalization. Journal of Integrative Plant Biology 62:104−17

doi: 10.1111/jipb.12896
[16]

Lewandowska-Sabat AM, Fjellheim S, Rognli OA. 2012. The continental-oceanic climatic gradient impose clinal variation in vernalization response in Arabidopsis thaliana. Environmental and Experimental Botany 78:109−16

doi: 10.1016/j.envexpbot.2011.12.033
[17]

Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology 15:550

doi: 10.1186/s13059-014-0550-8
[18]

Xue Y, Xue J, Ren X, Li C, Sun K, et al. 2022. Nutrient supply is essential for shifting tree peony reflowering ahead in autumn and sugar signaling is involved. International Journal of Molecular Sciences 23:7703

doi: 10.3390/ijms23147703
[19]

Mornya PMP, Cheng FY, Li HY. 2011. Chronological changes in plant hormone and sugar contents in cv. Ao-Shuang autumn flowering tree peony. Horticultural Science 38:104−12

doi: 10.17221/11/2011-HORTSCI
[20]

Wu P, Wu C, Zhou B. 2017. Drought stress induces flowering and enhances carbohydrate accumulation in Averrhoa Carambola. Horticultural Plant Journal 3:60−66

doi: 10.1016/j.hpj.2017.07.008
[21]

Ma QJ, Hu DG, Lu J, Sun MH, Liu YJ, et al. 2016. Molecular cloning and functional characterization of the apple sucrose transporter gene MdSUT2. Plant Physiology and Biochemistry 109:442−451

doi: 10.1016/j.plaphy.2016.10.026
[22]

Patzke K, Prananingrum P, Klemens PAW, Trentmann O, Rodrigues CM, et al. 2019. The plastidic sugar transporter pSuT influences flowering and affects cold responses. Plant physiology 179:569−587

doi: 10.1104/pp.18.01036
[23]

Andrés F, Coupland G. 2012. The genetic basis of flowering responses to seasonal cues. Nature Reviews Genetics 13:627−39

doi: 10.1038/nrg3291
[24]

Eshghi S, Tafazoli E, Dokhani S, Rahemi M, Emam Y. 2007. Changes in carbohydrate contents in shoot tips, leaves and roots of strawberry (Fragaria × ananassa Duch.) during flower-bud differentiation. Scientia Horticulturae 113:255−260

doi: 10.1016/j.scienta.2007.03.014
[25]

Xing LB, Zhang D, Li YM, Shen YW, Zhao CP, et al. 2015. Transcription Profiles Reveal Sugar and Hormone Signaling Pathways Mediating Flower Induction in Apple (Malus domestica Borkh. ). Plant & cell physiology 56:2052−2068

doi: 10.1093/pcp/pcv124
[26]

Wu M, Wu J, Gan Y. 2020. The new insight of auxin functions: transition from seed dormancy to germination and floral opening in plants. Plant Growth Regulation 91:169−74

doi: 10.1007/s10725-020-00608-1
[27]

Guo XL, Yu C, Luo L, Wan HH, Zhen N, et al. 2018. Developmental transcriptome analysis of floral transition in Rosa odorata var. gigantea. Plant Molecular Biology 97:113−30

doi: 10.1007/s11103-018-0727-8
[28]

Hu J, Liu Y, Tang X, Rao H, Ren C, et al. 2020. Transcriptome profiling of the flowering transition in saffron (Crocus sativus L.). Scientific Reports 10:9680

doi: 10.1038/s41598-020-66675-6
[29]

Zwiewka M, Bilanovičová V, Seifu YW, Nodzyński T. 2019. The nuts and bolts of PIN auxin efflux carriers. Frontiers in Plant Science 10:985

doi: 10.3389/fpls.2019.00985
[30]

Dubey SM, Serre NBC, Oulehlová D, Vittal P, Fendrych M, et al. 2021. No time for transcription-rapid auxin responses in plants. Cold Spring Harbor Perspectives in Biology 13:a039891

doi: 10.1101/cshperspect.a039891
[31]

Guo Y, An L, Yu H, Yang M. 2022. Endogenous hormones and biochemical changes during flower development and florescence in the buds and leaves of Lycium ruthenicum Murr. Forests 13:763

doi: 10.3390/f13050763
[32]

Villar L, Lienqueo I, Llanes A, Rojas P, Perez J, et al. 2020. Comparative transcriptomic analysis reveals novel roles of transcription factors and hormones during the flowering induction and floral bud differentiation in sweet cherry trees (Prunus avium L. cv. Bing). PLoS One 15:e0230110

doi: 10.1371/journal.pone.0230110
[33]

Hsu PK, Dubeaux G, Takahashi Y, Schroeder JI. 2021. Signaling mechanisms in abscisic acid-mediated stomatal closure. The Plant Journal 105:307−21

doi: 10.1111/tpj.15067
[34]

Zhang C, Zhou Q, Liu W, Wu X, Li Z, et al. 2022. BrABF3 promotes flowering through the direct activation of CONSTANS transcription in pak choi. The Plant Journal 111:134−48

doi: 10.1111/tpj.15783
[35]

An H, Jiang S, Zhang J, Xu F, Zhang X. 2021. Comparative transcriptomic analysis of differentially expressed transcripts associated with flowering time of loquat (Eriobotya japonica Lindl.). Horticulturae 7:171

doi: 10.3390/horticulturae7070171
[36]

Qin L, Zhang X, Yan J, Fan L, Rong C, et al. 2019. Effect of exogenous spermidine on floral induction, endogenous polyamine and hormone production, and expression of related genes in ‘Fuji’apple (Malus domestica Borkh.). Scientific Reports 9:12777

doi: 10.1038/s41598-019-49280-0
[37]

Li Z, Xiao W, Chen H, Zhu G, Lv F. 2022. Transcriptome analysis reveals endogenous hormone changes during spike development in Phalaenopsis. International Journal of Molecular Sciences 23:10461

doi: 10.3390/ijms231810461
[38]

Sheng J, Li X, Zhang D. 2022. Gibberellins, brassinolide, and ethylene signaling were involved in flower differentiation and development in Nelumbo nucifera. Horticultural Plant Journal 8:243−50

doi: 10.1016/j.hpj.2021.06.002
[39]

Yi X, Gao H, Yang Y, Yang S, Luo L, et al. 2021. Differentially expressed genes related to flowering transition between once-and continuous-flowering Roses. Biomolecules 12:58

doi: 10.3390/biom12010058
[40]

Li Y, Zhang D, Zhang X, Xing L, Fan S, et al. 2018. A transcriptome analysis of two apple (Malus × domestica) cultivars with different flowering abilities reveals a gene network module associated with floral transitions. Scientia Horticulturae 239:269−81

doi: 10.1016/j.scienta.2018.04.048
[41]

Yoshida H, Takehara S, Mori M, Ordonio RL, Matsuoka M, et al. 2020. Evolution of GA metabolic enzymes in land plants. Plant and Cell Physiology 61:1919−34

doi: 10.1093/pcp/pcaa126
[42]

Bao SJ, Hua CM, Shen LS, Yu H. 2020. New insights into gibberellin signaling in regulating flowering in Arabidopsis. Journal of Integrative Plant Biology 62:118−31

doi: 10.1111/jipb.12892
[43]

Karimi M, Ahmadi N, Ebrahimi M. 2022. Photoreceptor regulation of Hypericum perforatum L. (cv. Topas) flowering under different light spectrums in the controlled environment system. Environmental and Experimental Botany 196:104797

doi: 10.1016/j.envexpbot.2022.104797
[44]

Kim SK, Park HY, Jang YH, Lee JH, Kim JK, et al. 2013. The sequence variation responsible for the functional difference between the CONSTANS protein, and the CONSTANS-like (COL) 1 and COL2 proteins, resides mostly in the region encoded by their first exons. Plant Science 199:71−78

doi: 10.1016/j.plantsci.2012.09.019
[45]

Yang T, He Y, Niu S, Yan S, Zhang Y. 2020. Identification and characterization of the CONSTANS (CO)/CONSTANS-like (COL) genes related to photoperiodic signaling and flowering in tomato. Plant Science 301:110653

doi: 10.1016/j.plantsci.2020.110653
[46]

Ponnu J, Hoecker U. 2021. Illuminating the COP1/SPA ubiquitin ligase: fresh insights into its structure and functions during plant photomorphogenesis. Frontiers in Plant Science 12:662793

doi: 10.3389/fpls.2021.662793
[47]

Ahmad S, Peng D, Zhou Y, Zhao K. 2022. The genetic and hormonal inducers of continuous flowering in orchids: An emerging view. Cells 11:657

doi: 10.3390/cells11040657
[48]

Tanaka C, Itoh T, Iwasaki Y, Mizuno N, Nasuda S, et al. 2018. Direct interaction between VRN1 protein and the promoter region of the wheat FT gene. Genes & Genetic Systems 93:25−29

doi: 10.1266/ggs.17-00041
[49]

Tian L, Xie Z, Lu C, Hao X, Wu S, et al. 2019. The trehalose-6-phosphate synthase TPS5 negatively regulates ABA signaling in Arabidopsis thaliana. Plant Cell Reports 38:869−82

doi: 10.1007/s00299-019-02408-y
[50]

Ponnu J, Schlereth A, Zacharaki V, Działo MA, AbelC, et al. 2020. The trehalose 6-phosphate pathway impacts vegetative phase change in Arabidopsis thaliana. The Plant Journal 104:768−80

doi: 10.1111/tpj.14965
[51]

Ren H, Park MY, Spartz AK, Wong JH, Gray WM, et al. 2018. A subset of plasma membrane-localized PP2C. D phosphatases negatively regulate SAUR-mediated cell expansion in Arabidopsis. PLoS Genetics 14:e1007455

doi: 10.1371/journal.pgen.1007455
[52]

Matilla AJ. 2020. Auxin: hormonal signal required for seed development and dormancy. Plants 9:705

doi: 10.3390/plants9060705
[53]

Xu D, Jiang Y, Li J, Lin F, Holm M, et al. 2016. BBX21, an Arabidopsis B-box protein, directly activates HY5 and is targeted by COP1 for 26S proteasome-mediated degradation. PNAS 113:7655−7660

doi: 10.1073/pnas.1607687113