[1]

Jiang W, Zhang H, Long Y, Chen J, Sui Y, et al. 2021. GPS data in urban online ride-hailing: The technical potential analysis of demand prediction model. Journal of Cleaner Production 279:123706

doi: 10.1016/j.jclepro.2020.123706
[2]

Ke J, Feng S, Zhu Z, Yang H, Ye J. 2021. Joint predictions of multi-modal ride-hailing demands: A deep multi-task multi-graph learning-based approach. Transportation Research Part C: Emerging Technologies 127:103063

doi: 10.1016/j.trc.2021.103063
[3]

Rahman MH, Rifaat SM. 2021. Using spatio-temporal deep learning for forecasting demand and supply-demand gap in ride-hailing system with anonymised spatial adjacency information. IET Intelligent Transport Systems 15:941−57

doi: 10.1049/itr2.12073
[4]

Zhang D, Xiao F, Shen M, Zhong S. 2021. DNEAT: A novel dynamic node-edge attention network for origin-destination demand prediction. Transportation Research Part C: Emerging Technologies 122:102851

doi: 10.1016/j.trc.2020.102851
[5]

Elman JL. 1991. Distributed representations, simple recurrent networks, and grammatical structure. Machine Learning 7:195−225

doi: 10.1007/BF00114844
[6]

Rumelhart DE, Hinton GE, Williams RJ. 1986. Learning representations by back-propagating errors. Nature 323:533−36

doi: 10.1038/323533a0
[7]

Schmidhuber J. 2015. Deep learning in neural networks: An overview. Neural Networks 61:85−117

doi: 10.1016/j.neunet.2014.09.003
[8]

Yang D, Chen K, Yang M, Zhao X. 2019. Urban rail transit passenger flow forecast based on LSTM with enhanced long-term features. IET Intelligent Transport Systems 10:1475−82

doi: 10.1049/iet-its.2018.5511
[9]

Zhang J, Chen F, Shen Q. 2019. Cluster-Based LSTM Network for Short-Term Passenger Flow Forecasting in Urban Rail Transit. IEEE Access 7:147653−71

doi: 10.1109/ACCESS.2019.2941987
[10]

Yang X, Xue Q, Ding M, Wu J, Gao Z. 2021. Short-term prediction of passenger volume for urban rail systems: A deep learning approach based on smart-card data. International Journal of Production Economics 231:107920

doi: 10.1016/j.ijpe.2020.107920
[11]

Ibrahim A, Hall F. 1994. Effect of adverse weather conditions on speed-flow-occupancy relationships. Transportation Research Record 1994:184−91

[12]

Brilon W, Ponzlet M. 1996. Variability of speed-flow relationships on German autobahns. Transportation Research Record 1555:91−98

doi: 10.1177/0361198196155500112
[13]

Agarwal M, Maze T, Souleyrette R. 2005. Impacts of weather on urban freeway traffic flow characteristics and facility capacity. Proceedings of the 2005 Mid-Continent Transportation Research Symposium, Ames, Iowa, August 2005. pp. 1121−34.

[14]

Zhang D, Kabuka MR. 2018. Combining weather condition data to predict traffic flow: a GRU-based deep learning approach. IET Intelligent Transport Systems 12:578−85

doi: 10.1049/iet-its.2017.0313
[15]

Li G, Yang Y, Qu X. 2020. Deep learning approaches on pedestrian detection in hazy weather. IEEE Transactions on Industrial Electronics 67:8889−99

doi: 10.1109/TIE.2019.2945295
[16]

Liu L, Chen RC. 2017. A novel passenger flow prediction model using deep learning methods. Transportation Research Part C: Emerging Technologies 84:74−91

doi: 10.1016/j.trc.2017.08.001
[17]

Hou Y, Deng Z, Cui H. 2021. Short-term traffic flow prediction with weather conditions: Based on deep learning algorithms and data fusion. Complexity 2021:6662959

doi: 10.1155/2021/6662959
[18]

Liu L, Chen R, Zhu S. 2020. Impacts of weather on short-term metro passenger flow forecasting using a deep LSTM neural network. Applied Sciences 10:2962

doi: 10.3390/app10082962
[19]

Zhang S, Zhang J, Yang L, Yin J, Gao Z. 2022. Spatial-temporal attention fusion network for short-term passenger flow prediction on holidays in urban rail transit systems. Machine Learning arXiv:2203.00007

doi: abs/2203.00007
[20]

Yang J, Liu T, Li C, Tong W, Zhu Y. et al. 2021. MGSTCN: A Multi-Graph Spatio-Temporal Convolutional Network for Metro Passenger Flow Prediction. 2021 7th International Conference on Big Data Computing and Communications (BigCom), Deqing, China, 2021. pp. 164−71. USA: IEEE. https://doi.org/10.1109/BigCom53800.2021.00050.

[21]

Zhu H, Yang X, Wang Y. 2018. Prediction of Daily Entrance and Exit Passenger Flow of Rail Transit Stations by Deep Learning Method. Journal of Advanced Transportation 2018:6142724

doi: 10.1155/2018/6142724
[22]

Ling X, Huang Z, Wang C, Zhang F, Wang P. 2018. Predicting subway passenger flows under different traffic conditions. Plos One 13:e0202707

doi: 10.1371/journal.pone.0202707
[23]

Zhu K, Xun P, Li W, Li Z, Zhou R. 2019. Prediction of passenger flow in urban rail transit based on big data analysis and deep learning. IEEE Access 7:142272−79

doi: 10.1109/ACCESS.2019.2944744
[24]

Guo J, Xie Z, Qin Y, Jia L, Wang Y. 2019. Short-term abnormal passenger flow prediction based on the fusion of SVR and LSTM. IEEE Access 7:42946−55

doi: 10.1109/ACCESS.2019.2907739
[25]

Guo Z, Zhao X, Chen Y, Wu W, Yang J. 2019. Short-term passenger flow forecast of urban rail transit based on GPR and KRR. IET Intelligent Transport Systems 13:1374−82

doi: 10.1049/iet-its.2018.5530
[26]

Li D, Cao J, Li R, Wu L. 2020. A spatio-temporal structured LSTM model for short-term prediction of origin-destination matrix in rail transit with multisource data. IEEE Access 8:84000−19

doi: 10.1109/ACCESS.2020.2991982
[27]

Xue F, Yao E, Huan N, Li B, Liu S. 2020. Prediction of Urban Rail Transit Ridership under Rainfall Weather Conditions. Journal of Transportation Engineering, Part A: Systems 146:4020061

doi: 10.1061/jtepbs.0000383
[28]

Liu Q, Guo Q, Wang W, Zhang Y, Kang Q. 2021. An automatic detection algorithm of metro passenger boarding and alighting based on deep learning and optical flow. IEEE Transactions on Instrumentation and Measurement 70:5006613

doi: 10.1109/TIM.2021.3054627
[29]

Jing Y, Hu H, Guo S, Wang X, Chen F. 2021. Short-term prediction of urban rail transit passenger flow in external passenger transport hub based on LSTM-LGB-DRS. IEEE Transactions on Intelligent Transportation Systems 22:4611−21

doi: 10.1109/TITS.2020.3017109
[30]

Liu D, Wu Z, Sun S. 2022. Study on subway passenger flow prediction based on deep recurrent neural network. Multimedia Tools and Applications 81:18979−92

doi: 10.1007/s11042-020-09088-x
[31]

He Y, Li L, Zhu X, Tsui KL. 2022. Multi-graph convolutional-recurrent neural network (MGC-RNN) for short-term forecasting of transit passenger flow. IEEE Transactions on Intelligent Transportation Systems 23:8155−74

doi: 10.1109/TITS.2022.3150600
[32]

Mudashiru RB, Sabtu N, Abdullah R, Saleh A, Abustan I. 2022. A comparison of three multi-criteria decision-making models in mapping flood hazard areas of Northeast Penang, Malaysia. Natural Hazards 112:1903−39

doi: 10.1007/s11069-022-05250-w
[33]

Wang F, Huang GH, Fan Y, Li YP. 2020. Robust Subsampling ANOVA Methods for Sensitivity Analysis of Water Resource and Environmental Models. Water Resour Manag 34:3199−17

doi: 10.1007/s11269-020-02608-2
[34]

Yang G, Xu H. 2020. A residual BiLSTM model for named entity recognition. IEEE Access 8:227710−18

doi: 10.1109/ACCESS.2020.3046253
[35]

Moayedi H, Osouli A, Nguyen H, Rashid ASA. 2021. A novel Harris hawks' optimization and k-fold cross-validation predicting slope stability. Engineering With Computers 37:369−79

doi: 10.1007/s00366-019-00828-8
[36]

Vabalas A, Gowen E, Poliakoff E, Casson A. 2019. Machine learning algorithm validation with a limited sample size. PLoS One 14:e0224365

doi: 10.1371/journal.pone.0224365
[37]

Xiong Z, Cui Y, Liu Z, Zhao Y, Hu M, et al. 2020. Evaluating explorative prediction power of machine learning algorithms for materials discovery using k-fold forward cross-validation. Computational Materials Science 171:109203

doi: 10.1016/j.commatsci.2019.109203
[38]

Wu W, Liu R, Jin W, Ma C. 2019. Stochastic bus schedule coordination considering demand assignment and rerouting of passengers. Transportation Research Part B: Methodological 121:275−303

doi: 10.1016/j.trb.2019.01.010
[39]

Cheng R, Ge H, Wang J. 2017. An extended continuum model accounting for the driver’s timid and aggressive attributions. Physics Letters A 381:1302−12

doi: 10.1016/j.physleta.2017.02.018
[40]

Sun Y, Ge H, Cheng R. 2019. An extended car-following model considering driver’s memory and average speed of preceding vehicles with control strategy. Physica A: Statistical Mechanics and Its Applications 521:752−61

doi: 10.1016/j.physa.2019.01.092
[41]

Jiang C, Ge H, Cheng R. 2019. Mean-field flow difference model with consideration of on-ramp and off-ramp. Physica A: Statistical Mechanics and Its Applications 513:465−67

doi: 10.1016/j.physa.2018.09.026
[42]

Ma C, Dai G, Zhou J. 2022. Short-term traffic flow prediction for urban road sections based on time series analysis and LSTM_BILSTM method. IEEE Transactions on Intelligent Transportation Systems 23:5615−24

doi: 10.1109/TITS.2021.3055258
[43]

Li L, Yang Y, Yuan Z, Chen Z. 2021. Aspatial-temporal approach for traffic status analysis and prediction based on Bi-LSTM structure. Modern Physics Letters 35:2150481

doi: 10.1142/s0217984921504819
[44]

Yang Y, Yuan Z, Meng R. 2022. Exploring traffic crash occurrence mechanism toward cross-area freeways via an improved data mining approach. Journal of Transportation Engineering, Part A: Systems 148:04022052

doi: 10.1061/jtepbs.0000698