[1] |
Coen ES, Meyerowitz EM. 1991. The war of the whorls: genetic interactions controlling flower development. Nature 353:31−37 doi: 10.1038/353031a0 |
[2] |
Pelaz S, Ditta GS, Baumann E, Wisman E, Yanofsky MF. 2000. B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405:200−3 doi: 10.1038/35012103 |
[3] |
Ma H, Yanofsky MF, Meyerowitz EM. 1991. AGL1-AGL6, an Arabidopsis gene family with similarity to floral homeotic and transcription factor genes. Genes & Development 5:484−95 doi: 10.1101/gad.5.3.484 |
[4] |
Huang H, Tudor M, Weiss CA, Hu Y, Ma H. 1995. The Arabidopsis MADS-box gene AGL3 is widely expressed and encodes a sequence-specific DNA-binding protein. Plant Molecular Biology 28:549−67 doi: 10.1007/BF00020401 |
[5] |
Mandel MA, Yanofsky MF. 1998. The Arabidopsis AGL9 MADS box gene is expressed in young flower primordia. Sexual Plant Reproduction 11:22−28 doi: 10.1007/s004970050116 |
[6] |
Zahn LM, Kong H, Leebens-Mack JH, Kim S, Soltis PS, et al. 2005. The evolution of the SEPALLATA subfamily of MADS-box genes: a preangiosperm origin with multiple duplications throughout angiosperm history. Genetics 169:2209−23 doi: 10.1534/genetics.104.037770 |
[7] |
Ditta G, Pinyopich A, Robles P, Pelaz S, Yanofsky MF. 2004. The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity. Current Biology 14:1935−40 doi: 10.1016/j.cub.2004.10.028 |
[8] |
Pelaz S, Tapia-López R, Alvarez-Buylla ER, Yanofsky MF. 2001. Conversion of leaves into petals in Arabidopsis. Current Biology 11:182−84 doi: 10.1016/S0960-9822(01)00024-0 |
[9] |
Honma T, Goto K. 2001. Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature 409:525−29 doi: 10.1038/35054083 |
[10] |
Theißen G, Saedler H. 2001. Floral quartets. Nature 409:469−71 doi: 10.1038/35054172 |
[11] |
Theißen G, Melzer R, Rümpler F. 2016. MADS-domain transcription factors and the floral quartet model of flower development: linking plant development and evolution. Development 143:3259−71 doi: 10.1242/dev.134080 |
[12] |
Immink RGH, Tonaco IAN, de Folter S, Shchennikova A, van Dijk ADJ, et al. 2009. SEPALLATA3: the 'glue' for MADS box transcription factor complex formation. Genome Biology 10:R24 doi: 10.1186/gb-2009-10-2-r24 |
[13] |
Wang P, Wang S, Chen Y, Xu X, Guang X, Zhang Y. 2019. Genome-wide Analysis of the MADS-Box Gene Family in Watermelon. Computational Biology and Chemistry 80:341−50 doi: 10.1016/j.compbiolchem.2019.04.013 |
[14] |
Xu Z, Zhang Q, Sun L, Du D, Cheng T, et al. 2014. Genome-wide identification, characterisation and expression analysis of the MADS-box gene family in Prunus mume. Molecular Genetics and Genomics 289:903−20 doi: 10.1007/s00438-014-0863-z |
[15] |
Arora R, Agarwal P, Ray S, Singh AK, Singh VP, et al. 2007. MADS-box gene family in rice: genome-wide identification, organization and expression profiling during reproductive development and stress. BMC Genomics 8:242 doi: 10.1186/1471-2164-8-242 |
[16] |
Saha G, Park JI, Jung HJ, Ahmed NU, Kayum MA, et al. 2015. Genome-wide identification and characterization of MADS-box family genes related to organ development and stress resistance in Brassica rapa. BMC Genomics 16:178 doi: 10.1186/s12864-015-1349-z |
[17] |
Ampomah-Dwamena C, Morris BA, Sutherland P, Veit B, Yao JL. 2002. Down-regulation of TM29, a tomato SEPALLATA homolog, causes parthenocarpic fruit development and floral reversion. Plant Physiology 130:605−17 doi: 10.1104/pp.005223 |
[18] |
Kotilainen M, Elomaa P, Uimari A, Albert VA, Yu D, et al. 2000. GRCD1, an AGL2-like MADS box gene, participates in the C function during stamen development in Gerbera hybrida. The Plant Cell 12:1893−902 doi: 10.1105/tpc.12.10.1893 |
[19] |
Malcomber ST, Kellogg EA. 2005. SEPALLATA gene diversification: brave new whorls. Trends in Plant Science 10:427−35 doi: 10.1016/j.tplants.2005.07.008 |
[20] |
Pan Z, Chen Y, Du JS, Chen Y, Chung MC, et al. 2014. Flower development of Phalaenopsis orchid involves functionally divergent SEPALLATA-like genes. New Phytologist 202:1024−42 doi: 10.1111/nph.12723 |
[21] |
Soza VL, Snelson CD, Hewett Hazelton KD, Di Stilio VS. 2016. Partial redundancy and functional specialization of E-class SEPALLATA genes in an early-diverging eudicot. Developmental Biology 419:143−55 doi: 10.1016/j.ydbio.2016.07.021 |
[22] |
Vrebalov J, Ruezinsky D, Padmanabhan V, White R, Medrano D, et al. 2002. A MADS-box gene necessary for fruit ripening at the tomato Ripening-Inhibitor (Rin) locus. Science 296:343−6 doi: 10.1126/science.1068181 |
[23] |
Zhou Y, Xu Z, Yong X, Ahmad S, Yang W, et al. 2017. SEP-class genes in Prunus mume and their likely role in floral organ development. BMC Plant Biology 17:10 doi: 10.1186/s12870-016-0954-6 |
[24] |
Pi M, Hu S, Cheng L, Zhong R, Cai Z, et al. 2021. The MADS-box gene FveSEP3 plays essential roles in flower organogenesis and fruit development in woodland strawberry. Horticulture Research 8:247 doi: 10.1038/s41438-021-00673-1 |
[25] |
Wang Y, Li J. 2008. Molecular basis of plant architecture. Annual Review of Plant Biology 59:253−79 doi: 10.1146/annurev.arplant.59.032607.092902 |
[26] |
Zhang X, Lin S, Peng D, Wu Q, Liao X, et al. 2022. Integrated multi-omic data and analyses reveal the pathways underlying key ornamental traits in carnation flowers. Plant Biotechnology Journal 20:1182−96 doi: 10.1111/pbi.13801 |
[27] |
Kim D, Langmead B, Salzberg SL. 2015. HISAT: a fast spliced aligner with low memory requirements. Nature Methods 12:357−60 doi: 10.1038/nmeth.3317 |
[28] |
Wang Q, Zhang X, Lin S, Yang S, Yan X, et al. 2020. Mapping a double flower phenotype-associated gene DcAP2L in Dianthus chinensis. Journal of Experimental Botany 71:1915−27 doi: 10.1093/jxb/erz558 |
[29] |
Yagi M, Kosugi S, Hirakawa H, Ohmiya A, Tanase K, et al. 2014. Sequence analysis of the genome of carnation (Dianthus caryophyllus L.). DNA Research 21:231−41 doi: 10.1093/dnares/dst053 |
[30] |
Zhang X, Wang Q, Yang S, Lin S, Bao M, et al. 2018. Identification and Characterization of the MADS-Box Genes and Their Contribution to Flower Organ in Carnation (Dianthus caryophyllus L.). Genes 9:193 doi: 10.3390/genes9040193 |
[31] |
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Molecular Biology and Evolution 30:2725−9 doi: 10.1093/molbev/mst197 |
[32] |
Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCᴛ Method. Methods 25:402−8 doi: 10.1006/meth.2001.1262 |
[33] |
Walter M, Chaban C, Schütze K, Batistic O, Weckermann K, et al. 2004. Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation. The Plant Journal 40:428−38 doi: 10.1111/j.1365-313X.2004.02219.x |
[34] |
Clough SJ, Bent AF. 1998. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. The Plant Journal 16:735−43 doi: 10.1046/j.1365-313x.1998.00343.x |
[35] |
Schilling S, Kennedy A, Pan S, Jermiin LS, Melzer R. 2020. Genome-wide analysis of MIKC-type MADS-box genes in wheat: pervasive duplications, functional conservation and putative neofunctionalization. New Phytologist 225:511−29 doi: 10.1111/nph.16122 |
[36] |
Kaufmann K, Muiño JM, Jauregui R, Airoldi CA, Smaczniak C, et al. 2009. Target genes of the MADS transcription factor SEPALLATA3: integration of developmental and hormonal pathways in the Arabidopsis flower. PLoS Biology 7:e1000090 doi: 10.1371/journal.pbio.1000090 |
[37] |
Ruokolainen S, Ng YP, Albert VA, Elomaa P, Teeri TH. 2010. Large scale interaction analysis predicts that the Gerbera hybrida floral E function is provided both by general and specialized proteins. BMC Plant Biology 10:129 doi: 10.1186/1471-2229-10-129 |
[38] |
Matsunaga S, Uchida W, Kejnovsky E, Isono E, Moneger F, et al. 2004. Characterization of two SEPALLATA MADS-box genes from the dioecious plant Silene latifolia. Sexual Plant Reproduction 17:189−93 doi: 10.1007/s00497-004-0230-z |
[39] |
Zhang S, Lu S, Yi S, Han H, Liu L, et al. 2017. Functional conservation and divergence of five SEPALLATA-like genes from a basal eudicot tree, Platanus acerifolia. Planta 245:439−57 doi: 10.1007/s00425-016-2617-0 |
[40] |
Zhang C, Wei L, Yu X, Li H, Wang W, et al. 2021. Functional conservation and divergence of SEPALLATA-like genes in the development of two-type florets in marigold. Plant Science 309:110938 doi: 10.1016/j.plantsci.2021.110938 |
[41] |
Dreni L, Ferrándiz C. 2022. Tracing the evolution of the SEPALLATA subfamily across angiosperms associated with neo- and sub-functionalization for reproductive and agronomically relevant traits. Plants 11:2934 doi: 10.3390/plants11212934 |
[42] |
Gramzow L, Weilandt L, Theißen G. 2014. MADS goes genomic in conifers: towards determining the ancestral set of MADS-box genes in seed plants. Annals of Botany 114:1407−29 doi: 10.1093/aob/mcu066 |
[43] |
Kafri R, Dahan O, Levy J, Pilpel Y. 2008. Preferential protection of protein interaction network hubs in yeast: evolved functionality of genetic redundancy. PNAS 105:1243−48 doi: 10.1073/pnas.0711043105 |
[44] |
de Folter S, Immink RGH, Kieffer M, Pařenicová L, Henz SR, et al. 2005. Comprehensive interaction map of the Arabidopsis MADS Box transcription factors. The Plant Cell 17:1424−33 doi: 10.1105/tpc.105.031831 |