[1]

Wang B, Wu C, Kang L, Reniers G, Huang L. 2018. Work safety in China’s Thirteenth Five-Year plan period (2016–2020): Current status, new challenges and future tasks. Safety Science 104:164−78

doi: 10.1016/j.ssci.2018.01.012
[2]

Bhavsar R, Amin A, Zala L. 2021. Development of model for road crashes and identification of accident spots. International journal of intelligent transportation systems research 19(1):99−111

doi: 10.1007/s13177-020-00228-z
[3]

Bham GH, Manepalli URR, Samaranayke VA. 2019. A composite rank measure based on principal component analysis for hotspot identification on highways. Journal of Transportation Safety & Security 11(3):225−42

doi: 10.1080/19439962.2017.1384417
[4]

Lee J, Mannering F. 2002. Impact of roadside features on the frequency and severity of run-off-roadway accidents: an empirical analysis. Accident Analysis & Prevention 34(2):149−61

doi: 10.1016/s0001-4575(01)00009-4
[5]

Norden M, Jesse O, Herbert J. 1956. Application of statistical quality-control techniques to analysis of highway-accident data. Highway Research Board.

[6]

Sung N, Taylor WC, Vincent M. 2003. Another look at identifying hazardous locations. Transportation Research Board, Annual meeting, Washington DC.

[7]

Persaud BN, Hall FL. 1989. Catastrophe theory and patterns in 30-second freeway traffic data—Implications for incident detection. Transportation Research Part A: General 23(2):103−13

doi: 10.1016/0191-2607(89)90071-X
[8]

Chen JS, Wang SC. 1999. Statistically modelling relationships between accident types and highway features. Civil Engineering Systems 16(1):51−65

[9]

Jordan P. 1999. ITE and road safety audit-a partnership for traffic safety. ITE Journal 69:24−27

[10]

Saccomanno FF, Grossi R, Greco D, Mehmood A. 2001. Identifying black spots along highway SS107 in Southern Italy using two models. Journal of Transportation Engineering 127(6):515−22

doi: 10.1061/(ASCE)0733-947X(2001)127:6(515)
[11]

Fang S, Guo Z, Yang Z. 2001. A new identification method for Accident Prone Location on highway. Journal of Traffic and Transportation Engineering 2001(1):90−94+98

doi: 10.3321/j.issn:1671-1637.2001.01.023
[12]

Zhu X, Lu B. 2002. Identification method of road traffic accident-prone points (segments). Journal of Xinjiang Agricultural University 2002(1):63−66

doi: 10.3969/j.issn.1007-8614.2002.01.018
[13]

Pei Y. 2006. Improvement of quality control identification method for road traffic accident-prone points. Journal of Harbin Institute of Technology 2006(1):97−100

doi: 10.3321/j.issn:0367-6234.2006.01.028
[14]

Gregoriades A, Mouskos KC. 2013. Black spots identification through a Bayesian Networks quantification of accident risk index. Transportation Research Part C: Emerging Technologies 28:28−43

doi: 10.1016/j.trc.2012.12.008
[15]

Guerrero-Barbosa TE, Santiago-Palacio SY. 2016. Determination of accident-prone road sections using quantile regression. Revista Facultad de Ingeniería, Universidad de Antioquia 79:130−37. www.scielo.org.co/pdf/rfiua/n79/n79a12.pdf

[16]

Meng X, Qin W. 2017. Analysis of black spot for freeway based on both statistics and hypothesis testing. Chinese Journal of Safety Science 27(5):158−63

doi: 10.16265/j.cnki.issn1003-3033.2017.05.028
[17]

Hauer E. 1992. Empirical Bayes approach to the estimation of "unsafety": the multivariate regression method. Accident Analysis and Prevention 24(5):457−77

doi: 10.1016/0001-4575(92)90056-o
[18]

Kumara SSP, Chin HC. 2003. Modeling accident occurrence at signalized tee intersections with special emphasis on excess zeros. Traffic Injury Prevention 3(4):53−57

doi: 10.1080/15389580309852
[19]

Montella A. 2010. A comparative analysis of hotspot identification methods. Accident Analysis & Prevention 42(2):571−81

doi: 10.1016/j.aap.2009.09.025
[20]

Chen Y. 2019. Research on the configuration scheme of emergency dispatching point of police force in accident-prone area. Thesis. Beijing Jiaotong University, Beijing, China. https://doi.org/10.26944/d.cnki.gbfju.2019.001578

[21]

Anderson TK. 2009. Kernel density estimation and K-means clustering to profile road accident hotspots. Accident Analysis & Prevention 41(3):359−64

doi: 10.1016/j.aap.2008.12.014
[22]

Guo L, Zhou J, Dong S. 2018. Analysis of urban road traffic accidents based on improved K-means algorithm. Chinese Journal of Highways 31(4):270−79

doi: 10.3969/j.issn.1001-7372.2018.04.031
[23]

Wang J, Lu X. 2016. Research on identification and cause analysis of highway accident black spots based on cluster analysis. Highway Traffic Technology 32(5):114−19

[24]

Ester M, Kröger P, Sander J, Xu X. 1996. A density-based algorithm for discovering clusters in large spatial databases with noise. Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (KDD-96), Portland, Oregon, USA. USA: AAAI Press. pp. 226-231.

[25]

Wang H, Sun L, You K. 2013. Identification method of traffic accident prone points based on DENCLUE clustering algorithm. Journal of Transportation Engineering and Information 11(2):5−10

[26]

Luo S, Zhou W. 1999. Discussion on the identification method of road traffic accident-prone points. Journal of Xi'an Highway University (1):33−36

[27]

Chen J. 2015. Research on identifying hotspots in the urban road networks based on the network kernel density estimation method. MA Thesis. Southeast University, China.

[28]

Wang Y, Wang L. 2019. An identification method of traffic accident black point cased on street-network spatio-temporal kernel density estimation. Geographical Sciences 39(8):1238−45

doi: 10.13249/j.cnki.sgs.2019.08.005
[29]

Bíl M, Andrášik R, Janoška Z. 2013. Identification of hazardous road locations of traffic accidents by means of kernel density estimation and cluster significance evaluation. Accident Analysis & Prevention 55:265−73

doi: 10.1016/j.aap.2013.03.003
[30]

Bíl M, Andrášik R, Nezval V, Bílová M. 2017. Identifying locations along railway networks with the highest tree fall hazard. Applied Geography 87:45−53

doi: 10.1016/j.apgeog.2017.07.012
[31]

Elvik R. 2008. A survey of operational definitions of hazardous road locations in some European countries. Accident Analysis & Prevention 40(6):1830−35

doi: 10.1016/j.aap.2008.08.001
[32]

Erdogan S, Yilmaz I, Baybura T, Gullu M. 2008. Geographical information systems aided traffic accident analysis system case study: city of Afyonkarahisar. Accident Analysis & Prevention 40(1):174−81

doi: 10.1016/j.aap.2007.05.004
[33]

Bíl M, Andrášik R, Sedoník J. 2019. A detailed spatiotemporal analysis of traffic crash hotspots. Applied Geography 107:82−90

doi: 10.1016/j.apgeog.2019.04.008
[34]

Meng X, Sheng H, Chen T. 2008. Research on the identification nature of accident-prone points and the identification method based on BP neural network. Highway Traffic Science and Technology 2008(3):124−29

[35]

Zhang G, Mu Y, Wang L, Cheng Q. 2015. Application of GA-BP neural network and multi-level grey evaluation method in identification of road sections with frequent road traffic accidents in Urumqi. Science and Technology Management Research 35(15):222−26

doi: 10.3969/j.issn.1000-7695.2015.15.042
[36]

Zhang C, Shu Y, Yan L. 2019. A novel identification model for road traffic accident black spots: A case study in Ningbo, China. IEEE Access 7:140197−205

doi: 10.1109/ACCESS.2019.2942647
[37]

Fan Z, Liu C, Cai D, Yue S. 2019. Research on black spot identification of safety in urban traffic accidents based on machine learning method. Safety Science 118:607−16

doi: 10.1016/j.ssci.2019.05.039
[38]

Liu Q, Dong S, Wang L. 2019. Inland waterway 'Black Spot' and sensitive factors identification research based on MEA-BP neural network algorithm. Journal of Wuhan University of Technology (Transportation Science and Engineering Edition) 43(6):997−1000

[39]

Da Costa S, Qu X, Parajuli PM. 2015. A crash severity-based black spot identification model. Journal of Transportation Safety & Security 7(3):268−77

doi: 10.1080/19439962.2014.911230
[40]

Zhou W, Luo S. 2000. Conflict determination method for frequent traffic accident points in road sections. Journal of China Highway 2000(1):84−89

doi: 10.3321/j.issn:1001-7372.2000.01.019
[41]

Wu R. 2006. Research on the identification method of urban road traffic accidents based on TCT. Thesis. Southeast University, China

[42]

Sun L, Shao Y, Yan X, Lei X. 2012. Research on the identification method of black spots in highway traffic accidents based on TCT. Journal of Chongqing Jiaotong University (Natural Science Edition) 31(1):63−67

[43]

Wu P, Meng X, Cao M. 2020. Identification and spatiotemporal pattern mining of frequent urban traffic accidents. Chinese Journal of Safety Science 30(11):127−33

[44]

Sandhu HAS, Singh G, Sisodia MS, Chauhan R. 2016. Identification of black spots on highway with kernel density estimation method. Journal of the Indian Society of Remote Sensing 44(3):457−64

doi: 10.1007/s12524-015-0500-2
[45]

Erdogan S, Ilçi V, Soysal OM, Kormaz A. 2015. A model suggestion for the determination of the traffic accident hotspots on the Turkish highway road network: A pilot study. Boletim de Ciências Geodésicas 21:169−88

doi: 10.1590/s1982-21702015000100011
[46]

Wang H, Li R. 2016. Application of buffer analysis method in identification of accident-prone points. Highway Engineering 41(1):103−7

doi: 10.3969/j.issn.1674-0610.2016.01.022
[47]

Yuan T, Zeng X, Shi T. 2020. Identifying urban road black spots with a novel method based on the firefly clustering algorithm and a geographic information system. Sustainability 12(5):2091

doi: 10.3390/su12052091
[48]

Xiong L. 2018. Research on the identification of traffic accident hot spots and the analysis method of hot spots based on ArcGIS. Thesis. Chang'an University, China.

[49]

Zhu X, Cong H, Zhi Y, Suo Z. 2018. Identification and Analysis System of Accident-prone Road Sections Based on GIS Spatial Clustering. Urban Traffic 16(3):21−27+86

[50]

Jahan A, Abbaspour A, Safakhah S. 2021. A hybrid method based on P and P′ control chart for identifying hotspots. Quality and Reliability Engineering International 37(8):3493−511

doi: 10.1002/qre.2929
[51]

Harirforoush H, Bellalite L. 2019. A new integrated GIS-based analysis to detect hotspots: a case study of the city of Sherbrooke. Accident Analysis & Prevention 130:62−74

doi: 10.1016/j.aap.2016.08.015
[52]

Xu Q, Tao G. 2018. Traffic accident hotspots identification based on clustering ensemble model. 2018 5th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/2018 4th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom), Shanghai, China, 22−24 June 2018. USA: IEEE. pp. 1−4. https://doi.org/10.1109/CSCloud/EdgeCom.2018.00010

[53]

Sinnott RO, Yin S. 2015. Accident black spot identification and verification through social media. 2015 IEEE International Conference on Data Science and Data Intensive Systems, Sydney, NSW, Australia, 11−13 December 2015. USA: IEEE pp. 17−24. https://doi.org/10.1109/DSDIS.2015.34

[54]

Szénási S, Felde I, Kertész G, Nádai L. 2018. Road Accident Black Spot Localisation using Morphological Image Processing Methods on Heatmap. 2018 IEEE 18th International Symposium on Computational Intelligence and Informatics (CINTI), Budapest, Hungary, 21−22 November 2018. USA: IEEE. pp. 251−56. https://doi.org/10.1109/CINTI.2018.8928248

[55]

Ochieng WO, Wilson Cheruiyot K, Okeyo G. 2022. RFID-based location based services framework for alerting on black spots for accident prevention. Egyptian Informatics Journal 23(1):65−72

doi: 10.1016/j.eij.2021.06.001
[56]

Tanprasert T, Siripanpornchana C, Surasvadi N, Thajchayapong S. 2020. Recognizing traffic black spots from street view images using environment-aware image processing and neural network. IEEE Access 8:121469−78

doi: 10.1109/ACCESS.2020.3006493