[1]

Frede K, Schreiner M, Baldermann S. 2019. Light quality-induced changes of carotenoid composition in pak choi Brassica rapa ssp. chinensis. Journal of Photochemistry and Photobiology B: Biology 193:18−30

doi: 10.1016/j.jphotobiol.2019.02.001
[2]

Khan WA, Hu H, Ann Cuin T, Hao Y, Ji X, et al. 2022. Untargeted metabolomics and comparative flavonoid analysis reveal the nutritional aspects of pak choi. Food Chemistry 383:132375

doi: 10.1016/j.foodchem.2022.132375
[3]

Verrier PJ, Bird D, Burla B, Dassa E, Forestier C, et al. 2008. Plant ABC proteins – a unified nomenclature and updated inventory. Trends in Plant Science 13:151−59

doi: 10.1016/j.tplants.2008.02.001
[4]

Anfang M, Shani E. 2021. Transport mechanisms of plant hormones. Current Opinion in Plant Biology 63:102055

doi: 10.1016/j.pbi.2021.102055
[5]

Yang Z, Yang F, Liu J, Wu H, Yang H, et al. 2022. Heavy metal transporters: functional mechanisms, regulation, and application in phytoremediation. Science of the Total Environment 809:151099

doi: 10.1016/j.scitotenv.2021.151099
[6]

Yazaki K. 2006. ABC transporters involved in the transport of plant secondary metabolites. FEBS Letters 580:1183−91

doi: 10.1016/j.febslet.2005.12.009
[7]

Kang J, Hwang JU, Lee M, Kim YY, Assmann SM, et al. 2010. PDR-type ABC transporter mediates cellular uptake of the phytohormone abscisic acid. Proceedings of the National Academy of Sciences of the United States of America 107:2355−60

doi: 10.1073/pnas.0909222107
[8]

Yazaki K, Shitan N, Takamatsu H, Ueda K, Sato F. 2001. A novel Coptisjaponica multidrug-resistant protein preferentially expressed in the alkaloid-accumulating rhizome. Journal of Experimental Botany 52:877−79

doi: 10.1093/jexbot/52.357.877
[9]

Goodman CD, Casati P, Walbot V. 2004. A multidrug resistance-associated protein involved in anthocyanin transport in Zea mays. The Plant Cell 16:1812−26

doi: 10.1105/tpc.022574
[10]

Fu X, Shi P, He Q, Shen Q, Tang Y, et al. 2017. AaPDR3, a PDR transporter 3, is involved in sesquiterpene β-caryophyllene transport in Artemisia annua. Frontiers in Plant Science 8:723

doi: 10.3389/fpls.2017.00723
[11]

Jasinski M, Ducos E, Martinoia E, Boutry M. 2003. The ATP-binding cassette transporters: structure, function, and gene family comparison between rice and Arabidopsis. Plant Physiology 131:1169−77

doi: 10.1104/pp.102.014720
[12]

Garcia O, Bouige P, Forestier C, Dassa E. 2004. Inventory and comparative analysis of rice and Arabidopsis ATP-binding cassette (ABC) systems. Journal of Molecular Biology 343:249−65

doi: 10.1016/j.jmb.2004.07.093
[13]

Pang K, Li Y, Liu M, Meng Z, Yu Y. 2013. Inventory and general analysis of the ATP-binding cassette (ABC) gene superfamily in maize (Zea mays L). Gene 526:411−28

doi: 10.1016/j.gene.2013.05.051
[14]

Rea PA. 2007. Plant ATP-binding cassette transporters. Annual Review of Plant Biology 58:347−75

doi: 10.1146/annurev.arplant.57.032905.105406
[15]

Wang H, Zong C, Bai A, Yuan S, Li Y, et al. 2022. Transcriptome sequencing and gas chromatography–mass spectrometry analyses provide insights into β-caryophyllene biosynthesis in Brassica campestris. Food Chemistry: Molecular Sciences 5:100129

doi: 10.1016/j.fochms.2022.100129
[16]

Sánchez-Fernández R, Davies TG, Coleman JO, Rea PA. 2001. The Arabidopsis thaliana ABC protein superfamily, a complete inventory. Journal of Biological Chemistry 276:30231−44

doi: 10.1074/jbc.M103104200
[17]

Li Y, Liu G, Ma L, Liu T, Zhang C, et al. 2020. A chromosome-level reference genome of non-heading Chinese cabbage [Brassica campestris (syn Brassica rapa) ssp. chinensis]. Horticulture Research 7:212

doi: 10.1038/s41438-020-00449-z
[18]

Ofori PA, Mizuno A, Suzuki M, Martinoia E, Reuscher S, et al. 2018. Genome-wide analysis of ATP binding cassette (ABC) transporters in tomato. PLoS One 13:e0200854

doi: 10.1371/journal.pone.0200854
[19]

Yan C, Duan W, Lyu S, Li Y, Hou X. 2017. Genome-wide identification, evolution, and expression analysis of the ATP-binding cassette transporter gene family in Brassica rapa. Frontiers in Plant Science 8:349

doi: 10.3389/fpls.2017.00349
[20]

Yamagishi M. 2022. High temperature enhances anthocyanin coloration in Asiatic hybrid lily flowers via upregulation of the MYB12 positive regulator. Horticultural Plant Journal 8:769−76

doi: 10.1016/j.hpj.2022.05.003
[21]

Bhatia C, Gaddam SR, Pandey A, Trivedi PK. 2021. COP1 mediates light-dependent regulation of flavonol biosynthesis through HY5 in Arabidopsis. Plant Science 303:110760

doi: 10.1016/j.plantsci.2020.110760
[22]

Zhang Y, Kilambi HV, Liu J, Bar H, Lazary S, et al. 2021. ABA homeostasis and long-distance translocation are redundantly regulated by ABCG ABA importers. Science Advances 7:eabf6069

doi: 10.1126/sciadv.abf6069
[23]

Hwang JU, Song WY, Hong D, Ko D, Yamaoka Y, et al. 2016. Plant ABC transporters enable many unique aspects of a terrestrial plant's lifestyle. Molecular Plant 9:338−55

doi: 10.1016/j.molp.2016.02.003
[24]

Kuromori T, Miyaji T, Yabuuchi H, Shimizu H, Sugimoto E, et al. 2010. ABC transporter AtABCG25 is involved in abscisic acid transport and responses. Proceedings of the National Academy of Sciences of the United States of America 107:2361−66

doi: 10.1073/pnas.0912516107
[25]

Li Q, Zheng J, Li S, Huang G, Skilling SJ, et al. 2017. Transporter-mediated nuclear entry of jasmonoyl-isoleucine is essential for jasmonate signaling. Molecular Plant 10:695−708

doi: 10.1016/j.molp.2017.01.010
[26]

Zhang Z, Tong T, Fang Y, Zheng J, Zhang X, et al. 2020. Genome-wide identification of barley ABC genes and their expression in response to abiotic stress treatment. Plants 9:1281

doi: 10.3390/plants9101281
[27]

Thomine S, Wang R, Ward JM, Crawford NM, Schroeder JI. 2000. Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes. Proceedings of the National Academy of Sciences of the United States of America 97:4991−96

doi: 10.1073/pnas.97.9.4991