[1]

Demétrio CA, de Oliveira Jacob JF, Ambrosano GB, de Oliveira ÊT, Rodrigues PHV. 2021. In vitro propagation of cambuci (Campomanesia phaea): an endangered exotic fruit and ornamental plant from Brazilian Atlantic Forest. Plant Cell, Tissue and Organ Culture 145:203−8

doi: 10.1007/s11240-020-02002-1
[2]

Patel SR, Joshi AG, Pathak AR, Shrivastava N, Sharma S. 2021. Somatic embryogenesis in Leptadenia reticulata (Retz) Wight and Arn along with assessment of shoot and callus cultures for HPTLC fingerprint and quantification of p-coumaric acid. Plant Cell, Tissue and Organ Culture 145:173−89

doi: 10.1007/s11240-020-02000-3
[3]

Qiao Q, Edger PP, Xue L, Qiong L, Lu J, et al. 2021. Evolutionary history and pan-genome dynamics of strawberry (Fragaria spp). Proceedings of the National Academy of Sciences 118:e2105431118

doi: 10.1073/pnas.2105431118
[4]

Folta KM, Dhingra A, Howard L, Stewart PJ, Chandler CK. 2006. Characterization of LF9, an octoploid strawberry genotype selected for rapid regeneration and transformation. Planta 224:1051−67

doi: 10.1007/s00425-006-0278-0
[5]

Husaini AM, Aquil S, Bhat M, Qadri T, Kamaluddin TA, et al. 2008. A high-efficiency direct somatic embryogenesis system for strawberry (Fragaria × ananassa Duch.) cultivar Chandler. Journal of Crop Science and Biotechnology 11:107−10

[6]

Wang H, Yang Y, Li M, Liu J, Jin W. 2019. Reinvigoration of diploid strawberry (Fragaria vesca) during adventitious shoot regeneration. Scientific Reports 9:13007

doi: 10.1038/s41598-019-49391-8
[7]

Lei JJ, Xue L, Guo RX, Dai HP. 2017. The Fragaria species native to China and their geographical distribution. Acta Horticulturae 1156:37−46

doi: 10.17660/actahortic.2017.1156.5
[8]

Mezzetti B, Giampieri F, Zhang Y, Zhong C. 2018. Status of strawberry breeding programs and cultivation systems in Europe and the rest of the world. Journal of Berry Research 8:205−21

doi: 10.3233/JBR-180314
[9]

Liu L, Ge C, Wang T, Chen M, Qiao Y. 2016. In vitro regeneration from leaf of Fragaria nilgerrensis and autotetraploid induced by colchicine. Journal of Nuclear Agricultural Sciences 31:51−58

doi: 10.11869/j.issn.100-8551.2017.01.0051
[10]

Dai X, Qu P, Diao X, Tang Y, Qiao Q, et al. 2020. Optimization of callus induction conditions of Fragaria nilgerrensis. Journal of Yunnan University 42:393−400

[11]

Xiong J, Ding J, Li Y. 2015. Genome-editing technologies and their potential application in horticultural crop breeding. Horticulture Research 2:15019

doi: 10.1038/hortres.2015.19
[12]

Luo H, Li WJ, Li H, Zhang ZH. 2020. FaRGA1 gene silencing changes the characteristics of flowering and runner producing in strawberry. Acta Horticulturae Sinica 47:2331−39

doi: 10.16420/j.issn.0513-353x.2020-0584
[13]

Li X, Li H, Zhao Y, Zong P, Zhan Z, et al. 2021. Establishment of a simple and efficient Agrobacterium-mediated genetic transformation system to Chinese cabbage (Brassica rapa L. ssp. pekinensis). Horticultural Plant Journal 7:117−28

doi: 10.1016/j.hpj.2021.01.006
[14]

James DJ, Passey AJ, Barbara DJ. 1990. Agrobacterium-mediated transformation of apple and strawberry using disarmed Ti-binary vectors. Acta Horticulturae 280:495−502

doi: 10.17660/actahortic.1990.280.82
[15]

Zhao Y, Liu Q, Davis RE. 2004. Transgene expression in strawberries driven by a heterologous phloem-specific promoter. Plant Cell Reports 23:224−30

doi: 10.1007/s00299-004-0812-0
[16]

de Mesa MC, Jiménez-Bermúdez S, Pliego-Alfaro F, Quesada MA, Mercado JA. 2000. Agrobacterium cells as microprojectile coating: a novel approach to enhance stable transformation rates in strawberry. Functional Plant Biology 27:1093−100

doi: 10.1071/pp00025
[17]

Pantazis CJ, Fisk S, Mills K, Flinn BS, Shulaev V, et al. 2013. Development of an efficient transformation method by Agrobacterium tumefaciens and high throughput spray assay to identify transgenic plants for woodland strawberry (Fragaria vesca) using NPTII selection. Plant Cell Reports 32:329−37

doi: 10.1007/s00299-012-1366-1
[18]

Pi M, Hu S, Cheng L, Zhong R, Cai Z, et al. 2021. The MADS-box gene FveSEP3 plays essential roles in flower organogenesis and fruit development in woodland strawberry. Horticulture Research 8:s41438−21

doi: 10.1038/s41438-021-00673-1
[19]

Gao Q, Luo H, Li Y, Liu ZC, Kang C. 2020. Genetic modulation of RAP alters fruit coloration in both wild and cultivated strawberry. Plant Biotechnology Journal 18:1550−61

doi: 10.1111/pbi.13317
[20]

Husaini AM. 2010. Pre- and post-agroinfection strategies for efficient leaf disk transformation and regeneration of transgenic strawberry plants. Plant Cell Reports 29:97−110

doi: 10.1007/s00299-009-0801-4
[21]

Zhang J, Lei Y, Wang B, Li S, Yu S, et al. 2020. The high-quality genome of diploid strawberry (Fragaria nilgerrensis) provides new insights into anthocyanin accumulation. Plant Biotechnology Journal 18:1908−24

doi: 10.1111/pbi.13351
[22]

Dawa K, El-Denary M, Abo-Elglagel I. 2017. Callus formation and shoot regeneration as affected by plant growth regulators and explant types in three strawberry cultivars (Fragaria × ananassa Duch). Journal of Plant Production 8:599−604

[23]

Cappelletti R, Sabbadini S, Mezzetti B. 2016. The use of TDZ for the efficient in vitro regeneration and organogenesis of strawberry and blueberry cultivars. Scientia Horticulturae 207:117−24

doi: 10.1016/j.scienta.2016.05.016
[24]

Owen HR, Miller AR. 1996. Haploid plant regeneration from anther cultures of three North American cultivars of strawberry (Fragaria × ananassa Duch). Plant Cell Reports 15:905−9

doi: 10.1007/BF00231585
[25]

Landi L, Mezzetti B. 2006. TDZ, auxin and genotype effects on leaf organogenesis in Fragaria. Plant Cell Reports 25:281−88

doi: 10.1007/s00299-005-0066-5
[26]

Nehra NS, Chibbar RN, Kartha KK, Datla RSS, Crosby WL, et al. 1990. Genetic transformation of strawberry by Agrobacterium tumefaciens using a leaf disk regeneration system. Plant Cell Reports 9:293−98

doi: 10.1007/BF00232854
[27]

Shahvali-Kohshour R, Moieni A, Baghizadeh A. 2013. Positive effects of cold pretreatment, iron source, and silver nitrate on anther culture of strawberry (Fragaria × ananassa Duch.). Plant Biotechnology Reports 7:481−88

doi: 10.1007/s11816-013-0286-z
[28]

Wang H, Li M, Yang Y, Dong J, Jin W. 2015. Histological and endogenous plant growth regulators changes associated with adventitious shoot regeneration from in vitro leaf explants of strawberry (Fragaria × ananassa cv. 'Honeoye'). Plant Cell, Tissue and Organ Culture 123:479−88

doi: 10.1007/s11240-015-0851-y
[29]

Alsheikh M, Suso HP, Robson M, Battey N, Wetten A. 2002. Appropriate choice of antibiotic and Agrobacterium strain improves transformation of antibiotic-sensitive Fragaria vesca and F. v. semperflorens. Plant Cell Reports 20:1173−80

doi: 10.1007/s00299-002-0453-0
[30]

Joldersma D, Sadowski N, Timp W, Liu ZC. 2022. Assembly and annotation of Fragaria vesca 'Yellow Wonder' genome, a model diploid strawberry for molecular genetic research. Fruit Research 2:13

[31]

Hira VVV, de Jong AL, Ferro K, Khurshed M, Molenaar RJ, et al. 2019. Comparison of different methodologies and cryostat versus paraffin sections for chromogenic immunohistochemistry. Acta Histochemica 121:125−34

doi: 10.1016/j.acthis.2018.10.011
[32]

Donnoli R, Sunseri F, Martelli G, Greco I. 2001. Somatic embryogenesis, plant regeneration and genetic transformation in Fragaria spp. Acta Horticulturae 560:235−40

doi: 10.17660/ActaHortic.2001.560.45
[33]

Nehra NS, Stushnoff C, Kartha KK. 1989. Direct shoot regeneration from strawberry leaf disks. Journal of the American Society for Horticultural Science 114:1014−18

doi: 10.21273/JASHS.114.6.1014
[34]

Biswas MK, Islam R, Hossain M. 2007. Somatic embryogenesis in strawberry (Fragaria sp.) through callus culture. Plant Cell, Tissue and Organ Culture 90:49−54

doi: 10.1007/s11240-007-9247-y
[35]

Silveira V, de Vita AM, Macedo AF, Dias MFR, Floh EIS, et al. 2013. Morphological and polyamine content changes in embryogenic and non-embryogenic callus of sugarcane. Plant Cell, Tissue and Organ Culture 114:351−64

doi: 10.1007/s11240-013-0330-2
[36]

Kim J, Lee CG, Na H. 2020. Optimal culture environment for anther-derived callus, embryo, and regeneration of strawberry 'Jukhyang'. Horticulture, Environment, and Biotechnology 61:1031−38

doi: 10.1007/s13580-020-00321-y
[37]

Al-Khayri JM. 2011. Influence of yeast extract and casein hydrolysate on callus multiplication and somatic embryogenesis of date palm (Phoenix dactylifera L.). Scientia Horticulturae 130:531−35

doi: 10.1016/j.scienta.2011.07.024
[38]

Li J, Gao C, Miao Y, Liu Z, Cui K. 2021. Development of a highly efficient callus induction and plant regeneration system for Dendrocalamus sinicus using hypocotyls as explants. Plant Cell, Tissue and Organ Culture 145:117−25

doi: 10.1007/s11240-020-01996-y
[39]

Carvalho CHS, Bohorova N, Bordallo PN, Abreu LL, Valicente FH, et al. 1997. Type II callus production and plant regeneration in tropical maize genotypes. Plant Cell Reports 17:73−76

doi: 10.1007/s002990050355
[40]

Long Y, Yang Y, Ge F, Pan G, Shen Y. 2020. Establishment of a maize callus regeneration system from haploid shoot tips. Plant Cell, Tissue and Organ Culture 141:583−92

doi: 10.1007/s11240-020-01817-2
[41]

Pereira Gomes-Copeland KK, da Silva Lédo A, de Almeida FTC, Oliveira Moreira B, dos Santos DC, et al. 2018. Effect of elicitors in Poincianella pyramidalis callus culture in the biflavonoid biosynthesis. Industrial Crops and Products 126:421−25

doi: 10.1016/j.indcrop.2018.10.038
[42]

Liu ZR, Sanford JC. 1988. Plant regeneration by organogenesis from strawberry leaf and runner tissue. HortScience 23:1057−59

doi: 10.21273/HORTSCI.23.6.1057
[43]

Chawla HS. 2005. Introduction to Plant Biotechnology (second edition). 538 pages. Beijing: Chemical Industry Press. pp 97-99.

[44]

Passey AJ, Barrett KJ, James DJ. 2003. Adventitious shoot regeneration from seven commercial strawberry cultivars (Fragaria × ananassa Duch.) using a range of explant types. Plant Cell Reports 21:397−401

doi: 10.1007/s00299-002-0530-4
[45]

Liu G, Yuan Y, Jiang H, Bao Y, Ning G, et al. 2021. Agrobacterium tumefaciens-mediated transformation of modern rose (Rosa hybrida) using leaf-derived embryogenic callus. Horticultural Plant Journal 7:359−66

doi: 10.1016/j.hpj.2021.02.001
[46]

Koncz C, Schell J. 1986. The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimaeric genes carried by a novel type of Agrobacterium binary vector. Molecular and General Genetics MGG 204:383−96

doi: 10.1007/BF00331014