[1] |
Bäurle I, Dean C. 2006. The timing of developmental transitions in plants. Cell 125:655−64 doi: 10.1016/j.cell.2006.05.005 |
[2] |
Huijser P, Schmid M. 2011. The control of developmental phase transitions in plants. Development 138:4117−29 doi: 10.1242/dev.063511 |
[3] |
Dambreville A, Lauri PÉ, Normand F, Guédon Y. 2015. Analysing growth and development of plants jointly using developmental growth stages. Annals of Botany 115:93−105 doi: 10.1093/aob/mcu227 |
[4] |
Mutasa-Göttgens E, Hedden P. 2009. Gibberellin as a factor in floral regulatory networks. Journal of Experimental Botany 60:1979−89 doi: 10.1093/jxb/erp040 |
[5] |
Matsoukas IG, Massiah AJ, Thomas B. 2012. Florigenic and antiflorigenic signaling in plants. Plant and Cell Physiology 53:1827−42 doi: 10.1093/pcp/pcs130 |
[6] |
Moon J, Lee H, Kim M, Lee I. 2005. Analysis of flowering pathway integrators in Arabidopsis. Plant and Cell Physiology 46(2):292−9 doi: 10.1093/pcp/pci024 |
[7] |
Wigge PA, Kim MC, Jaeger KE, Busch W, Schmid M, et al. 2005. Integration of spatial and temporal information during floral induction in Arabidopsis. Science 309:1056−59 doi: 10.1126/science.1114358 |
[8] |
Wei Q, Ma C, Xu Y, Wang T, Chen Y, et al. 2017. Control of chrysanthemum flowering through integration with an aging pathway. Nature Communications 8:829 doi: 10.1038/s41467-017-00812-0 |
[9] |
Mathieu J, Yant LJ, Mürdter F, Küttner F, Schmid M. 2009. Repression of flowering by the miR172 target SMZ. PLoS Biology 7:e1000148 doi: 10.1371/journal.pbio.1000148 |
[10] |
Porri A, Torti S, Romera-Branchat M, Coupland G. 2012. Spatially distinct regulatory roles for gibberellins in the promotion of flowering of Arabidopsis under long photoperiods. Development 139:2198−209 doi: 10.1242/dev.077164 |
[11] |
Zhou C, Wang J. 2013. Regulation of flowering time by microRNAs. Journal of Genetics and Genomics 40:211−15 doi: 10.1016/j.jgg.2012.12.003 |
[12] |
Khan MRG, Ai X, Zhang J. 2014. Genetic regulation of flowering time in annual and perennial plants. Wiley Interdisciplinary Reviews RNA 5:347−59 doi: 10.1002/wrna.1215 |
[13] |
Yu Y, Zhang Y, Chen X, Chen Y. 2019. Plant noncoding RNAs: hidden players in development and stress responses. Annual Review of Cell and Developmental Biology 35:407−31 doi: 10.1146/annurev-cellbio-100818-125218 |
[14] |
Song X, Li Y, Cao X, Qi Y. 2019. microRNAs and their regulatory roles in plant-environment interactions. Annual Review of Plant Biology 70:489−525 doi: 10.1146/annurev-arplant-050718-100334 |
[15] |
Fei Q, Xia R, Meyers BC. 2013. Phased, secondary, small interfering RNAs in posttranscriptional regulatory networks. The Plant Cell 25:2400−15 doi: 10.1105/tpc.113.114652 |
[16] |
Ren G, Xie M, Zhang S, Vinovskis C, Chen X, et al. 2014. Methylation protects microRNAs from an AGO1-associated activity that uridylates 5' RNA fragments generated by AGO1 cleavage. Proceedings of the National Academy of Sciences of the United States of America 111:6365−70 doi: 10.1073/pnas.1405083111 |
[17] |
Wu G, Park MY, Conway SR, Wang JW, Weigel D, et al. 2009. The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell 138:750−59 doi: 10.1016/j.cell.2009.06.031 |
[18] |
Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP. 2002. microRNAs in plants. Genes & Development 16:1616−26 doi: 10.1101/gad.1004402 |
[19] |
Shikata M, Koyama T, Mitsuda N, Ohme-Takagi M. 2009. Arabidopsis SBP-box genes SPL10, SPL11 and SPL2 control morphological change in association with shoot maturation in the reproductive phase. Plant and Cell Physiology 50:2133−45 doi: 10.1093/pcp/pcp148 |
[20] |
Wang JW, Czech B, Weigel D. 2009. miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana. Cell 138:738−49 doi: 10.1016/j.cell.2009.06.014 |
[21] |
Gandikota M, Birkenbihl RP, Höhmann S, Cardon GH, Saedler H, et al. 2007. The miRNA156/157 recognition element in the 3' UTR of the Arabidopsis SBP box gene SPL3 prevents early flowering by translational inhibition in seedlings. The Plant Journal 49:683−93 doi: 10.1111/j.1365-313X.2006.02983.x |
[22] |
Yu S, Cao L, Zhou C, Zhang T, Lian H, et al. 2013. Sugar is an endogenous cue for juvenile-to-adult phase transition in plants. eLife 2:e00269 doi: 10.7554/eLife.00269 |
[23] |
Amasino R. 2010. Seasonal and developmental timing of flowering. The Plant Journal 61:1001−13 doi: 10.1111/j.1365-313X.2010.04148.x |
[24] |
Wang J. 2014. Regulation of flowering time by the miR156-mediated age pathway. Journal of Experimental Botany 65:4723−30 doi: 10.1093/jxb/eru246 |
[25] |
Peng T, Qiao M, Liu H, Teotia S, Zhang Z, et al. 2018. A resource for inactivation of microRNAs using short tandem target mimic technology in model and crop plants. Molecular Plant 11:1400−17 doi: 10.1016/j.molp.2018.09.003 |
[26] |
Yant L, Mathieu J, Dinh TT, Ott F, Lanz C, et al. 2010. Orchestration of the floral transition and floral development in Arabidopsis by the bifunctional transcription factor APETALA2. The Plant Cell 22:2156−70 doi: 10.1105/tpc.110.075606 |
[27] |
Luo Y, Guo Z, Li L. 2013. Evolutionary conservation of microRNA regulatory programs in plant flower development. Developmental Biology 380:133−44 doi: 10.1016/j.ydbio.2013.05.009 |
[28] |
Zhu QH, Helliwell CA. 2011. Regulation of flowering time and floral patterning by miR172. Journal of Experimental Botany 62:487−95 doi: 10.1093/jxb/erq295 |
[29] |
Aukerman MJ, Sakai H. 2003. Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. The Plant Cell 15:2730−41 doi: 10.1105/tpc.016238 |
[30] |
Chen X. 2004. A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science 303:2022−25 doi: 10.1126/science.1088060 |
[31] |
Jung JH, Seo PJ, Kang SK, Park CM. 2011. miR172 signals are incorporated into the miR156 signaling pathway at the SPL3/4/5 genes in Arabidopsis developmental transitions. Plant Molecular Biology 76:35−45 doi: 10.1007/s11103-011-9759-z |
[32] |
Lian H, Wang L, Ma N, Zhou C, Han L, et al. 2021. Redundant and specific roles of individual MIR172 genes in plant development. PLoS Biology 19:e3001044 doi: 10.1371/journal.pbio.3001044 |
[33] |
Xu Z, Chen M, Li L, Ma Y. 2011. Functions and application of the AP2/ERF transcription factor family in crop improvement. Journal of Integrative Plant Biology 53:570−85 doi: 10.1111/j.1744-7909.2011.01062.x |
[34] |
Zhang B, Chen X. 2021. Secrets of the MIR172 family in plant development and flowering unveiled. PLoS Biology 19:e3001099 doi: 10.1371/journal.pbio.3001099 |
[35] |
Cao S, Wang Y, Li X, Gao F, Feng J, et al. 2020. Characterization of the AP2/ERF transcription factor family and expression profiling of DREB subfamily under cold and osmotic stresses in Ammopiptanthus nanus. Plants 9:455 doi: 10.3390/plants9040455 |
[36] |
Teotia S, Tang G. 2015. To bloom or not to bloom: role of microRNAs in plant flowering. Molecular Plant 8:359−77 doi: 10.1016/j.molp.2014.12.018 |
[37] |
Telfer A, Bollman KM, Poethig RS. 1997. Phase change and the regulation of trichome distribution in Arabidopsis thaliana. Development 124:645−54 doi: 10.1242/dev.124.3.645 |
[38] |
Poethig RS. 1990. Phase change and the regulation of shoot morphogenesis in plants. Science 250:923−30 doi: 10.1126/science.250.4983.923 |
[39] |
Lawrence EH, Springer CJ, Helliker BR, Poethig RS. 2021. microRNA156-mediated changes in leaf composition lead to altered photosynthetic traits during vegetative phase change. New Phytologist 231:1008−22 doi: 10.1111/nph.17007 |
[40] |
Jia X, Chen Y, Xu X, Shen F, Zheng Q, et al. 2017. miR156 switches on vegetative phase change under the regulation of redox signals in apple seedlings. Scientific Reports 7:14223 doi: 10.1038/s41598-017-14671-8 |
[41] |
Heuret P, Meredieu C, Coudurier T, Courdier F, Barthélémy D. 2006. Ontogenetic trends in the morphological features of main stem annual shoots of Pinus pinaster (Pinaceae). American Journal of Botany 93:1577−87 doi: 10.3732/ajb.93.11.1577 |
[42] |
Preston JC, Hileman LC. 2013. Functional Evolution in the Plant SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE (SPL) gene family. Frontiers in Plant Science 4:80 doi: 10.3389/fpls.2013.00080 |
[43] |
Wang JW, Park MY, Wang L, Koo Y, Chen X, et al. 2011. miRNA control of vegetative phase change in trees. PLoS Genetics 7:e1002012 doi: 10.1371/journal.pgen.1002012 |
[44] |
Rubinelli PM, Chuck G, Li X, Meilan R. 2012. Constitutive expression of the Corngrass1 microRNA in poplar affects plant architecture and stem lignin content and composition. Biomass and Bioenergy 54:312−21 doi: 10.1016/j.biombioe.2012.03.001 |
[45] |
Lawrence EH, Leichty AR, Doody EE, Ma C, Strauss SH, et al. 2021. Vegetative phase change in Populus tremula × alba. New Phytologist 231:351−64 doi: 10.1111/nph.17316 |
[46] |
Li H, Luo Y, Ma B, Hu J, Lv Z, et al. 2021. Hierarchical action of mulberry miR156 in the vegetative phase transition. International Journal of Molecular Sciences 22:5550 doi: 10.3390/ijms22115550 |
[47] |
Yu N, Yang J, Yin G, Li R, Zou W. 2020. Genome-wide characterization of the SPL gene family involved in the age development of Jatropha curcas. BMC Genomics 21:368 doi: 10.1186/s12864-020-06776-8 |
[48] |
Shalom L, Shlizerman L, Zur N, Doron-Faigenboim A, Blumwald E, et al. 2015. Molecular characterization of SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) gene family from Citrus and the effect of fruit load on their expression. Frontiers in Plant Science 6:389 doi: 10.3389/fpls.2015.00389 |
[49] |
Chen G, Li J, Liu Y, Zhang Q, Gao Y, et al. 2019. Roles of the GA-mediated SPL gene family and miR156 in the floral development of Chinese chestnut (Castanea mollissima). International Journal of Molecular Sciences 20:1577 doi: 10.3390/ijms20071577 |
[50] |
Li B, Zhao Y, Wang S, Zhang X, Wang Y, et al. 2021. Genome-wide identification, gene cloning, subcellular location and expression analysis of SPL gene family in P. granatum L. BMC Plant Biology 21:400 doi: 10.1186/s12870-021-03171-7 |
[51] |
Wan L, Wang F, Guo X, Lu S, Qiu Z, et al. 2012. Identification and characterization of small non-coding RNAs from Chinese fir by high throughput sequencing. BMC Plant Biology 12:146 doi: 10.1186/1471-2229-12-146 |
[52] |
Qin S, Bao L, He Z, Li C, La H, et al. 2022. Identification and regulatory network analysis of SPL family transcription factors in Populus euphratica Oliv. heteromorphic leaves. Scientific Reports 12:2856 doi: 10.1038/s41598-022-06942-w |
[53] |
Hudson CJ, Freeman JS, Jones RC, Potts BM, Wong MML, et al. 2014. Genetic control of heterochrony in Eucalyptus globulus. G3 Genes Genomes Genetics 4:1235−45 doi: 10.1534/g3.114.011916 |
[54] |
Ahsan MU, Hayward A, Irihimovitch V, Fletcher S, Tanurdzic M, et al. 2019. Juvenility and vegetative phase transition in tropical/subtropical tree crops. Frontiers in Plant Science 10:729 doi: 10.3389/fpls.2019.00729 |
[55] |
Wang L, Cui J, Jin B, Zhao J, Xu H, et al. 2020. Multifeature analyses of vascular cambial cells reveal longevity mechanisms in old Ginkgo biloba trees. Proceedings of the National Academy of Sciences of the United States of America 117:2201−10 doi: 10.1073/pnas.1916548117 |
[56] |
Niu S, Liu C, Yuan H, Li P, Li Y, et al. 2015. Identification and expression profiles of sRNAs and their biogenesis and action-related genes in male and female cones of Pinus tabuliformis. BMC Genomics 16(1):693 doi: 10.1186/s12864-015-1885-6 |
[57] |
Akhter S, Westrin KJ, Zivi N, Nordal V, Kretzschmar WW, et al. 2022. Cone-setting in spruce is regulated by conserved elements of the age-dependent flowering pathway. New Phytologist 236:1951−63 doi: 10.1111/nph.18449 |
[58] |
Tang M, Bai X, Niu L, Chai X, Chen M, et al. 2018. miR172 regulates both vegetative and reproductive development in the perennial Woody Plant Jatropha curcas. Plant and Cell Physiology 59(12):2549−63 doi: 10.1093/pcp/pcy175 |
[59] |
Sun L, Jiang Z, Ju Y, Zou X, Wan X, et al. 2021. A potential endogenous gibberellin-mediated signaling cascade regulated floral transition in Magnolia × soulangeana 'Changchun'. Molecular Genetics and Genomics 296:207−22 doi: 10.1007/s00438-020-01740-3 |
[60] |
Ahsan MU, Hayward A, Alam M, Bandaralage JH, Topp B, et al. 2019. Scion control of miRNA abundance and tree maturity in grafted avocado. BMC Plant Biology 19:382 doi: 10.1186/s12870-019-1994-5 |
[61] |
Nilsson L, Carlsbecker A, Sundås-Larsson A, Vahala T. 2007. APETALA2 like genes from Picea abies show functional similarities to their Arabidopsis homologues. Planta 225:589−602 doi: 10.1007/s00425-006-0374-1 |
[62] |
An W, Gong W, He S, Pan Z, Sun J, et al. 2015. microRNA and mRNA expression profiling analysis revealed the regulation of plant height in Gossypium hirsutum. BMC Genomics 16:886 doi: 10.1186/s12864-015-2071-6 |
[63] |
Zhang H, Zhang J, Yan J, Gou F, Mao Y, et al. 2017. Short tandem target mimic rice lines uncover functions of miRNAs in regulating important agronomic traits. Proceedings of the National Academy of Sciences of the United States of America 114:5277−82 doi: 10.1073/pnas.1703752114 |
[64] |
Chávez Montes RA, de Fátima Flor Rosas-Cárdenas, De Paoli E, Accerbi M, Rymarquis LA, et al. 2014. Sample sequencing of vascular plants demonstrates widespread conservation and divergence of microRNAs. Nature Communications 5:3722 doi: 10.1038/ncomms4722 |
[65] |
Gubler F, Kalla R, Roberts JK, Jacobsen JV. 1995. Gibberellin-regulated expression of a myb gene in barley aleurone cells: evidence for Myb transactivation of a high-pI alpha-amylase gene promoter. The Plant Cell 7:1879−91 doi: 10.1105/tpc.7.11.1879 |
[66] |
Guo C, Xu Y, Shi M, Lai Y, Wu X, et al. 2017. Repression of miR156 by miR159 regulates the timing of the juvenile-to-adult transition in Arabidopsis. The Plant Cell 29:1293−1304 doi: 10.1105/tpc.16.00975 |
[67] |
Garighan J, Dvorak E, Estevan J, Loridon K, Huettel B, et al. 2021. The identification of small RNAs differentially expressed in apple buds reveals a potential role of the Mir159-MYB regulatory module during dormancy. Plants 10:2665 doi: 10.3390/plants10122665 |
[68] |
Kim MH, Cho JS, Lee JH, Bae SY, Choi YI, et al. 2018. Poplar MYB transcription factor PtrMYB012 and its Arabidopsis AtGAMYB orthologs are differentially repressed by the Arabidopsis miR159 family. Tree Physiology 38:801−12 doi: 10.1093/treephys/tpx164 |
[69] |
Hu H, Guo Z, Yang J, Cui J, Zhang Y, et al. 2021. Transcriptome and microRNA sequencing identified miRNAs and target genes in different developmental stages of the vascular cambium in Cryptomeria fortunei hooibrenk. Frontiers in Plant Science 12:751771 doi: 10.3389/fpls.2021.751771 |
[70] |
Ding Q, Zeng J, He X. 2016. MiR169 and its target PagHAP2-6 regulated by ABA are involved in poplar cambium dormancy. Journal of Plant Physiology 198:1−9 doi: 10.1016/j.jplph.2016.03.017 |
[71] |
Xu M, Zhang L, Li W, Hu X, Wang MB, et al. 2014. Stress-induced early flowering is mediated by miR169 in Arabidopsis thaliana. Journal of Experimental Botany 65:89−101 doi: 10.1093/jxb/ert353 |
[72] |
Luan M, Xu M, Lu Y, Zhang L, Fan Y, et al. 2015. Expression of zma-miR169 miRNAs and their target ZmNF-YA genes in response to abiotic stress in maize leaves. Gene 555:178−85 doi: 10.1016/j.gene.2014.11.001 |
[73] |
Zhao H, Lin K, Ma L, Chen Q, Gan S, et al. 2020. Arabidopsis NUCLEAR FACTOR Y A8 inhibits the juvenile-to-adult transition by activating transcription of MIR156s. Journal of Experimental Botany 71:4890−902 doi: 10.1093/jxb/eraa197 |
[74] |
Potkar R, Recla J, Busov V. 2013. ptr-MIR169 is a posttranscriptional repressor of PtrHAP2 during vegetative bud dormancy period of aspen (Populus tremuloides) trees. Biochemical and Biophysical Research Communications 431:512−18 doi: 10.1016/j.bbrc.2013.01.027 |