[1] |
Deng X, Wang L, Li S, Zhang S, Zhang Z, et al. 2019. Review and prospect of fruit breeding for 40 years. Journal of Fruit Science 36(4):514−20 doi: 10.13925/j.cnki.gsxb.20190094 |
[2] |
Li J, Liu Y, Tang Y, Shao J, Xu T, et al. 2022. Optimizing fertilizer management based on controlled-release fertilizer to improve yield, quality, and reduce fertilizer application on apples. Journal of Soil Science and Plant Nutrition 22:393−405 doi: 10.1007/s42729-021-00656-0 |
[3] |
Todorović M, Mehmeti A, Cantore V. 2018. Impact of different water and nitrogen inputs on the eco-efficiency of durum wheat cultivation in Mediterranean environments. Journal of Cleaner Production 183:1276−88 doi: 10.1016/j.jclepro.2018.02.200 |
[4] |
Zhou L, Qi R. 2017. Effect of Unreasonable Fertilizer on Soil Property and Its Controlling Measures. Gansu Agricultural Science and Technology 2017(1):74−87 |
[5] |
Souri MK, Hatamian M. 2019. Aminochelates in plant nutrition: a review. Journal of Plant Nutrition 42:67−78 doi: 10.1080/01904167.2018.1549671 |
[6] |
Yu Z, Elliott EM. 2021. Nitrogen isotopic fractionations during nitric oxide production in an agricultural soil. Biogeosciences 18:805−29 doi: 10.5194/bg-18-805-2021 |
[7] |
Miao R, Ma J, Liu Y, Liu Y, Yang Z, et al. 2019. Variability of aboveground litter inputs alters soil carbon and nitrogen in a coniferous–broadleaf mixed forest of central China. Forests 10:188 doi: 10.3390/f10020188 |
[8] |
Fresne M, Jordan P, Fenton O, Mellander PE, Daly K. 2021. Soil chemical and fertilizer influences on soluble and medium-sized colloidal phosphorus in agricultural soils. The Science of the Total Environment 754:142112 doi: 10.1016/j.scitotenv.2020.142112 |
[9] |
Belov SV, Danyleiko YK, Glinushkin AP, Kalinitchenko VP, Egorov AV, et al. 2021. An activated potassium phosphate fertilizer solution for stimulating the growth of agricultural plants. Frontiers in Physics 8:618320 doi: 10.3389/fphy.2020.618320 |
[10] |
Zhao H, Sun B, Lu F, Wang X, Zhuang T, et al. 2017. Roles of nitrogen, phosphorus, and potassium fertilizers in carbon sequestration in a Chinese agricultural ecosystem. Climatic Change 142:587−96 doi: 10.1007/s10584-017-1976-2 |
[11] |
Davarpanah S, Tehranifar A, Abadía J, Val J, Davarynejad G, et al. 2018. Foliar calcium fertilization reduces fruit cracking in pomegranate (Punica granatum cv Ardestani). Scientia Horticulturae 230:86−91 doi: 10.1016/j.scienta.2017.11.023 |
[12] |
Potarzycki J, Grzebisz W, Szczepaniak W. 2022. Magnesium fertilization increases nitrogen use efficiency in winter wheat (Triticum aestivum L.). Plants 11:2600 doi: 10.3390/plants11192600 |
[13] |
Zhang S, Yong HE, Fang H. 2003. Application of artificial neutral network on relationship analysis of crop yield and soil space distributing information. Systems Engineering - Theory & Practice 23(12):127−32 |
[14] |
Yang Z, Wu X, Chen L, Huang L, Chen Y, et al. 2021. Fertilization regulates accumulation and allocation of biomass and nutrients in Phoebe bournei seedlings. Agriculture 11:1187 doi: 10.3390/agriculture11121187 |
[15] |
Tadayon MS, Saghafi K, Sadeghi S. 2023. Applying the compositional nutrient diagnosis (CND) to pomegranate (Punica granatum cv. 'Rabab') under saline and calcareous soil condition. Journal of Plant Nutrition 46:1−16 doi: 10.1080/01904167.2022.2067762 |
[16] |
Islam MJ, Ahmad S, Haque F, Reaz MBI, Bhuiyan MAS, et al. 2022. Application of min-max normalization on subject-invariant EMG pattern recognition. IEEE Transactions on Instrumentation and Measurement 71:2521612 doi: 10.1109/TIM.2022.3220286 |
[17] |
Song S, Wang P, Heidari AA, Wang M, Zhao X, et al. 2021. Dimension decided Harris Hawks optimization with Gaussian mutation: balance analysis and diversity patterns. Knowledge-Based Systems 215:106425 doi: 10.1016/j.knosys.2020.106425 |
[18] |
Ba AF, Huang H, Wang M, Ye X, Gu Z, et al. 2022. Levy-based antlion-inspired optimizers with orthogonal learning scheme. Engineering With Computers 38:397−418 doi: 10.1007/s00366-020-01042-7 |
[19] |
Chen H, Heidari AA, Chen H, Wang M, Pan Z, et al. 2020. Multi-population differential evolution-assisted Harris Hawks optimization: framework and case studies. Future Generation Computer Systems 111:175−98 doi: 10.1016/j.future.2020.04.008 |
[20] |
Li C, Li J, Chen H, Heidari AA. 2021. Memetic Harris Hawks Optimization: developments and perspectives on project scheduling and QoS-aware web service composition. Expert Systems With Applications 171:114529 doi: 10.1016/j.eswa.2020.114529 |
[21] |
Ye H, Wu P, Zhu T, Xiao Z, Zhang X, et al. 2021. Diagnosing coronavirus disease 2019 (COVID-19): efficient Harris Hawks-inspired fuzzy K-nearest neighbor prediction methods. IEEE Access 9:17787−802 doi: 10.1109/ACCESS.2021.3052835 |
[22] |
Ridha HM, Gomes C, Hizam H, Ahmadipour M, Heidari AA, et al. 2021. Multi-objective optimization and multi-criteria decision-making methods for optimal design of standalone photovoltaic system: a comprehensive review. Renewable and Sustainable Energy Reviews 135:110202 doi: 10.1016/j.rser.2020.110202 |
[23] |
Fan Y, Wang P, Heidari AA, Wang M, Zhao X, et al. 2020. Rationalized fruit fly optimization with sine cosine algorithm: a comprehensive analysis. Expert Systems With Applications 157:113486 doi: 10.1016/j.eswa.2020.113486 |
[24] |
Tang H, Xu Y, Lin A, Heidari AA, Wang M, et al. 2020. Predicting green consumption behaviors of students using efficient firefly grey wolf-assisted K-nearest neighbor classifiers. IEEE Access 8:35546−62 doi: 10.1109/ACCESS.2020.2973763 |
[25] |
Liu Y, Chong G, Heidari AA, Chen H, Liang G, et al. 2020. Horizontal and vertical crossover of Harris hawk optimizer with Nelder-Mead simplex for parameter estimation of photovoltaic models. Energy Conversion and Management 223:113211 doi: 10.1016/j.enconman.2020.113211 |
[26] |
Zhang H, Wang Z, Chen W, Heidari AA, Wang M, et al. 2021. Ensemble mutation-driven salp swarm algorithm with restart mechanism: framework and fundamental analysis. Expert Systems With Applications 165:113897 doi: 10.1016/j.eswa.2020.113897 |
[27] |
Pang J, Zhou H, Tsai YC, Chou FD. 2018. A scatter simulated annealing algorithm for the bi-objective scheduling problem for the wet station of semiconductor manufacturing. Computers & Industrial Engineering 123:54−66 doi: 10.1016/j.cie.2018.06.017 |
[28] |
Rashedi E, Nezamabadi-Pour H, Saryazdi S. 2009. GSA: a gravitational search algorithm. Information Sciences 179:2232−48 doi: 10.1016/j.ins.2009.03.004 |
[29] |
Zhang X, Xu Y, Yu C, Heidari AA, Li S, et al. 2020. Gaussian mutational chaotic fruit fly-built optimization and feature selection. Expert Systems With Applications 141:112976 doi: 10.1016/j.eswa.2019.112976 |
[30] |
Li C, Hou L, Sharma BY, Li H, Chen C, et al. 2018. Developing a new intelligent system for the diagnosis of tuberculous pleural effusion. Computer Methods and Programs in Biomedicine 153:211−25 doi: 10.1016/j.cmpb.2017.10.022 |
[31] |
Liang X, Cai Z, Wang M, Zhao X, Chen H, et al. 2022. Chaotic oppositional sine–cosine method for solving global optimization problems. Engineering With Computers 38:1223−39 doi: 10.1007/s00366-020-01083-y |
[32] |
Zhu W, Ma C, Zhao X, Wang M, Heidari AA, et al. 2020. Evaluation of Sino foreign cooperative education project using orthogonal sine cosine optimized kernel extreme learning machine. IEEE Access 8:61107−23 doi: 10.1109/ACCESS.2020.2981968 |
[33] |
Saremi S, Mirjalili S, Lewis A. 2017. Grasshopper optimisation algorithm: theory and application. Advances in Engineering Software 105:30−47 doi: 10.1016/j.advengsoft.2017.01.004 |
[34] |
Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, et al. 2017. Salp Swarm Algorithm: a bio-inspired optimizer for engineering design problems. Advances in Engineering Software 114:163−91 doi: 10.1016/j.advengsoft.2017.07.002 |
[35] |
Gupta S, Deep K, Heidari AA, Moayedi H, Chen H. 2021. Harmonized salp chain-built optimization. Engineering With Computers 37:1049−79 doi: 10.1007/s00366-019-00871-5 |
[36] |
Zhang H, Cai Z, Ye X, Wang M, Kuang F, et al. 2022. A multi-strategy enhanced salp swarm algorithm for global optimization. Engineering With Computers 38:1177−203 doi: 10.1007/s00366-020-01099-4 |
[37] |
Chen C, Wang X, Yu H, Zhao N, Wang M, et al. 2020. An enhanced comprehensive learning particle swarm optimizer with the elite-based dominance scheme. Complexity 2020:4968063 doi: 10.1155/2020/4968063 |
[38] |
Wang M, Chen H, Yang B, Zhao X, Hu L, et al. 2017. Toward an optimal kernel extreme learning machine using a chaotic moth-flame optimization strategy with applications in medical diagnoses. Neurocomputing 267:69−84 doi: 10.1016/j.neucom.2017.04.060 |
[39] |
Chen H, Yang C, Heidari AA, Zhao X. 2020. An efficient double adaptive random spare reinforced whale optimization algorithm. Expert Systems With Applications 154:113018 doi: 10.1016/j.eswa.2019.113018 |
[40] |
Zhu A, Xu C, Li Z, Wu J, Liu Z. 2015. Hybridizing grey wolf optimization with differential evolution for global optimization and test scheduling for 3D stacked SoC. Journal of Systems Engineering and Electronics 26:317−28 doi: 10.1109/JSEE.2015.00037 |
[41] |
Chen H, Xu Y, Wang M, Zhao X. 2019. A balanced whale optimization algorithm for constrained engineering design problems. Applied Mathematical Modelling 71:45−59 doi: 10.1016/j.apm.2019.02.004 |
[42] |
Xu Y, Chen H, Heidari AA, Luo J, Zhang Q, et al. 2019. An efficient chaotic mutative moth-flame-inspired optimizer for global optimization tasks. Expert Systems With Applications 129:135−55 doi: 10.1016/j.eswa.2019.03.043 |