[1] |
Central Bank of Sri Lanka. 2020. Annual Report 2020. National output, expenditure, income & employment. pp. 35−49 |
[2] |
Somasiri LLW, Nadarajah N, Amarasinghe L, Gunathilake HAJ. 1994. Land suitability assessment of coconut growing areas in the coconut triangle. Occasional Publication series No. 3, Coconut research Institute, Lunuwila , Sri lanka. pp. 27−39 |
[3] |
Wijesinghe J, Herath HMIK, Arachchi LV. 2016. Effect of coconut-based agroforestry systems on physical and chemical properties of soil in Intermediate Zone of Sri Lanka. Proceedings of the 5th Young Scientist Forum Symposium: National Science and Technology Commission, Colombo, 2016. |
[4] |
Wang X, Yan J, Zhang X, Zhang S, Chen Y. 2020. Organic manure input improves soil water and nutrients use for sustainable maize (Zea mays L.) productivity on the Loess Plateau. PLoS One 15:e0238042 doi: 10.1371/journal.pone.0238042 |
[5] |
Selvamani V, Maheswarappa H, Chowdappa P. 2017. Soil health management in cococnut. In Soil Health Management in Plantation Crops, eds. Maheswarappa HP , Chowdappa P. New Delhi, India: Today and Tomorrow's Printers and Publishers. pp. 27–65 |
[6] |
Nirukshan GS, Dissanayake DMPD, Herath I, Tennakoon NA. 2016. Comparison of plant and soil nutritional status between organically and conventionally cultivated two coconut lands in the intermediate zone of Sri Lanka. Proceedings of the 5th Young Scientist Forum Symposium: National Science and Technology Commission, Ministry of Education, Colombo, Sri lanka, 2016. pp. 61−64 |
[7] |
Raveendra SAST, Nissanka SP, Somasundaram D, Atapattu AJ, Mensah S. 2021. Coconut-gliricidia mixed cropping systems improve soil nutrients in dry and wet regions of Sri Lanka. Agroforestry Systems 95:307−19 doi: 10.1007/s10457-020-00587-2 |
[8] |
Senarathne SH, Atapattu AJ, Raveendra T, Mensah S, Dassanayake KB. 2019. Biomass allocation and growth performance of Tithonia diversifolia (Hemsl.) A. Gray in coconut plantations in Sri Lanka. Agroforestry Systems 93:1865−75 doi: 10.1007/s10457-018-0290-y |
[9] |
Atapattu AAAJ, Senarathne SHS, Raveendra SAST, Egodawatte WCP, Mensah, S. 2017. Effect of short term agroforestry systems on soil quality in marginal coconut lands in Sri Lanka. Agricultural Research Journal 54(3):324−28 doi: 10.5958/2395-146X.2017.00060.6 |
[10] |
Atapattu AAAJ, Raveendra SAST, Pushpakumara DKNG, Rupasinghe WMD. 2017. Regeneration potential of Gliricidia sepium (Jacq.) Kunth ex Walp. as a fuelwood species. Indian Journal of Plant Sciences, 6:32−39 |
[11] |
Liyanage MdS, Danso SKA, Jayasundara HPS. 1994. Biological nitrogen fixation in four Gliricidia sepium genotypes. Plant and Soil 161(2):267−74 doi: 10.1007/BF00046398 |
[12] |
Hitinayake HMGSB, Gunathunga KMH. 2015. Evaluation of Gliricidia resources in Kandy district for Dendro Thermal Power Generation (DTPG). In National Energy Symposium. Sri Lanka: Sri Lanka Sustainable Energy Authority Ministry of Power and Renewable Energy. pp. 50−58. |
[13] |
Liyanage LVK, Jayasundera HPS. 1988. Gliricidia as a multipurpose tree for coconut plantation. Journal of the National Institute of Plantaiton Management, 9(2):1−6 |
[14] |
Atapattu AAAJ, Pushpakumara DKNG, Rupasinghe WMD, Senarathne SHS, Raveendra SAST. 2017. Potential of Gliricidia sepium as a fuelwood species for sustainable energy generation in Sri Lanka. Agricultural Research Journal 54(1):34−39 doi: 10.5958/2395-146X.2017.00006.0 |
[15] |
Gabhane JW, Bhange VP, Patil PD, Bankar ST, Kumar S. 2020. Recent trends in biochar production methods and its application as a soil health conditioner: a review. SN Applied Sciences, 2(7):1−21 |
[16] |
Laghari M, Naidu R, Xiao B, Hu Z, Mirjat MS, et al. 2016. Recent developments in biochar as an effective tool for agricultural soil management: a review. Journal of the Science of Food and Agriculture 96(15):4840−49 doi: 10.1002/jsfa.7753 |
[17] |
Atkinson CJ, Fitzgerald JD, Hipps NA. 2010. Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review. Plant and Soil 337:1−18 doi: 10.1007/s11104-010-0464-5 |
[18] |
Barrow CJ. 2012. Biochar: potential for countering land degradation and for improving agriculture. Applied Geography 34:21−28 doi: 10.1016/j.apgeog.2011.09.008 |
[19] |
Verheijen F, Jeffery S, Bastos A, Van Der Velde M, Diafas I. 2010. Biochar application to soils - A critical scientific review of effects on soil properties, processes and functions. Report, EUR 24099 EN. Office for the Official Publications of the European Communities, Luxembourg. pp. 149−62. http://dx.doi.org/10.2788/472 |
[20] |
Herath HMSK, Camps-Arbestain M, Hedley M. 2013. Effect of biochar on soil physical properties in two contrasting soils: an Alfisol and an Andisol. Geoderma 209:188−97 doi: 10.1016/J.GEODERMA.2013.06.016 |
[21] |
Lehmann J. 2007. Bio-energy in the black. Frontiers in Ecology and the Environment 5(7):381−87 doi: 10.1890/1540-9295(2007)5[381:BITB]2.0.CO;2 |
[22] |
Mapa RB, Daasanayake AR, Nayakekorale HB. 2005. Soils of the intermediate zone of Sri Lanka: Special publication No. 04. Soils of the low country Intermediate Zone. Soil Science Society of Sri Lanka 2005:53−117 |
[23] |
Bremner JM. 1996. Nitrogen-Total. In Methods of Soil Analysis: Part 3 Chemical Methods, eds. Sparks DL, Page AL, Helmke PA, Loeppert RH, Soltanpour PN, et al. Madison, USA: Soil Science Society of America and American Society of Agronomy. pp. 1085−121. https://doi.org/10.2136/sssabookser5.3.c37 |
[24] |
Enders A, Lehmann J. 2012. Comparison of wet-digestion and dry-ashing methods for total elemental analysis of biochar. Communications in Soil Science and Plant Analysis 43(7):1042−52 doi: 10.1080/00103624.2012.656167 |
[25] |
Xing B, Yeneman PLM. 1998. Microwave digestion for analysis of metals in soil. Communications in Soil Science and Plant Analysis 29(7−8):923−30 doi: 10.1080/00103629809369996 |
[26] |
Jiang PK, Xu QF, Xu ZH, Cao ZH. 2006. Seasonal changes in soil labile organic carbon pools within a Phyllostachys praecox stand under high rate fertilization and winter mulch in subtropical China. Forest Ecology and Management 236(1):30−36 doi: 10.1016/j.foreco.2006.06.010 |
[27] |
Gaskin JW, Steiner C, Harris K, Das KC, Bibens B. 2008. Effect of low-temperature pyrolysis conditions on biochar for agricultural use. Transactions of the ASABE 51(6):2061−69 doi: 10.13031/2013.25409 |
[28] |
Yuan JH, Xu RK, Qian W, Wang RH. 2011. Comparison of the ameliorating effects on an acidic ultisol between four crop straws and their biochars. Journal of Soils and Sediments 11(5):741−50 doi: 10.1007/s11368-011-0365-0 |
[29] |
Kumarathilaka P, Vithanage M. 2017. Influence of Gliricidia sepium biochar on attenuate perchlorate-induced heavy metal release in serpentine soil. Journal of Chemistry 2017:6180636 doi: 10.1155/2017/6180636 |
[30] |
Deenik JL, McClellan T, Uehara G, Antal MJ, Campbell S. 2010. Charcoal volatile matter content influences plant growth and soil nitrogen transformations. Soil Science Society of America Journal 74(4):1259−70 doi: 10.2136/sssaj2009.0115 |
[31] |
Biederman LA, Harpole WS. 2013. Biochar and its effects on plant productivity and nutrient cycling: a meta-analysis. GCB bioenergy 5(2):202−14 doi: 10.1111/gcbb.12037 |
[32] |
Chan KY, Xu ZH. 2009. Biochar: nutrient properties and their enhancement. In Biochar for environmental management: Science and technology, eds. Lehmann J, Joseph S. 5th Edition. UK: Earthscan. pp. 67−84. |
[33] |
Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, et al. 2011. Biochar effects on soil biota – A review. Soil Biology and Biochemistry 43(9):1812−36 doi: 10.1016/j.soilbio.2011.04.022 |
[34] |
Yao Y, Gao B, Zhang M, Inyang M, Zimmerman AR. 2012. Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil. Chemosphere 89(11):1467−71 doi: 10.1016/j.chemosphere.2012.06.002 |
[35] |
Chan KY, Van Zwieten L, Meszaros I, Downie A, Joseph S. 2007. Agronomic values of greenwaste biochar as a soil amendment. Soil Research 45(8):629−34 doi: 10.1071/SR07109 |
[36] |
Laird D, Fleming P, Wang B, Horton R, Karlen D. 2010. Biochar impact on nutrient leaching from a Midwestern agricultural soil. Geoderma 158(3-4):436−42 doi: 10.1016/j.geoderma.2010.05.012 |
[37] |
Hossain MZ, Bahar MM, Sarkar B, Donne SW, Ok YS, et al. 2020. Biochar and its importance on nutrient dynamics in soil and plant. Biochar 2(4):379−420 doi: 10.1007/s42773-020-00065-z |
[38] |
Nguyen BT, Phan BT, Nguyen TX, Nguyen VN, et al. 2020. Contrastive nutrient leaching from two differently textured paddy soils as influenced by biochar addition. Journal of Soils and Sediments, 20(1):297−307 doi: 10.1007/s11368-019-02366-8 |
[39] |
Kuo YL, Lee CH, Jien SH. 2020. Reduction of nutrient leaching potential in coarse-textured soil by using biochar. Water 12(7):2012 doi: 10.3390/w12072012 |