[1]

Gupta B, Huang B. 2014. Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. International Journal of Genomics 2014:701596

doi: 10.1155/2014/701596
[2]

Hu L, Tao H, Zhang X, Pang H, Fu J. 2012. Exogenous glycine betaine ameliorates adverse effects of salt stress on perennial ryegrass. Journal of the American Society for Horticultural Science 137:38−46

doi: doi.org/10.21273/JASHS.137.1.38
[3]

Hu G, Liu Y, Zhang X, Yao F, Huang Y, et al. 2015. Physiological evaluation of alkali-salt tolerance of thirty switchgrass (Panicum virgatum) lines. PLoS One 10:e0125305

doi: 10.1371/journal.pone.0125305
[4]

Kim J, Liu Y, Zhang X, Zhao B, Childs KL. 2016. Analysis of salt-induced physiological and proline changes in 46 switchgrass (Panicum virgatum) lines indicates multiple response modes. Plant Physiology and Biochemistry 105:203−12

doi: 10.1016/j.plaphy.2016.04.020
[5]

Wu W, Zhang Q, Ervin EH, Yang Z, Zhang X. 2017. Physiological mechanisms of enhancing salt stress tolerance of perennial ryegrass by 24-epibrassinolide. Frontiers in Plant Science 8:1017

doi: 10.3389/fpls.2017.01017
[6]

Alam H, Khattak JZK, Ksiksi TS, Saleem MH, Fahad S, et al. 2021. Negative impact of long-term exposure of salinity and drought stress on native Tetraena mandavillei L. Physiol Plant 172:1336−51

doi: 10.1111/ppl.13273
[7]

Zulfiqar H, Shahbaz M, Ahsan M, Nafees M, Nadeem H, et al. 2021. Strigolactone (GR24) induced salinity tolerance in sunflower (Helianthus annuus L.) by ameliorating Morpho-physiological and biochemical attributes under in vitro conditions. Journal of Plant Growth Regulation 40:2079−91

doi: 10.1007/s00344-020-10256-4
[8]

Huang B, DaCosta M, Jiang Y. 2014. Research advances in mechanisms of turfgrass tolerance to abiotic stress: from physiology to molecular biology. Critical Reviews in Plant Sciences 33:141−89

doi: 10.1080/07352689.2014.870411
[9]

Zhang X, Ervin EH, Liu Y, Hu G, Shang C, et al. 2015. Differential responses of antioxidants, abscisic acid, and auxin to deficit irrigation in two perennial ryegrass cultivars contrasting in drought tolerance. Journal of the American Society for Horticultural Science 140:562−72

doi: 10.21273/JASHS.140.6.562
[10]

Alamri S, Hu Y, Mukherjee S, Aftab T, Fahad S, et al. 2020. Silicon-induced postponement of leaf senescence is accompanied by modulation of antioxidative defense and ion homeostasis in mustard (Brassica juncea) seedlings exposed to salinity and drought stress. Plant Physiology and Biochemistry 157:47−59

doi: 10.1016/j.plaphy.2020.09.038
[11]

Ali MS, Baek KH. 2020. Jasmonic acid signaling pathway in response to abiotic stresses in plants. International Journal of Molecular Sciences 21:621

doi: 10.3390/ijms21020621
[12]

Llanes A, Andrade A, Alemano S, Luna V. 2016. Alterations of endogenous hormonal levels in plants under drought and salinity. American Journal of Plant Sciences 7:1357−71

doi: 10.4236/ajps.2016.79129
[13]

Ryu H, Cho YG. 2015. Plant hormones in salt stress tolerance. Journal of Plant Biology 58:147−55

doi: 10.1007/s12374-015-0103-z
[14]

Strivastava LM. 2002. Plant growth and development: Hormones and environment. San Diego: Academic Press. 772 pp.

[15]

Tang X, Mu X, Shao H, Wang H, Brestic M. 2015. Global plant-responding mechanisms to salt stress: physiological and molecular levels and implications in biotechnology, Critic. Rev. Critical Reviews in Biotechnology 35:425−37

doi: 10.3109/07388551.2014.889080
[16]

Marcum K, Pessarakli M. 2010. Salinity tolerance of ryegrass turf cultivars. Hortscience 45:1882−84

doi: 10.21273/HORTSCI.45.12.1882
[17]

Sun S, An M, Han L, Yin S. 2015. Foliar application of 24-epibrassinolide improved salt stress tolerance of perennial ryegrass. HortScience 50:1518−23

doi: 10.21273/HORTSCI.50.10.1518
[18]

Zhang X, Ervin EH, Evanylo GK, Haering KC. 2009. Impact of biosolids on hormone metabolism in drought-stresses tall fescue. Crop Science 49:1893−2009

doi: 10.2135/cropsci2008.09.0521
[19]

Ali M, Kamran M, Abbasi GH, Saleem MH, Ahmad S, et al. 2021. Melatonin-induced salinity tolerance by ameliorating osmotic and oxidative stress in the seedlings of two tomato (Solanum lycopersicum L.) cultivars. Journal of Plant Growth Regulation 40:2236−48

doi: 10.1007/s00344-020-10273-3
[20]

Fahad S, Hussain S, Saud S, Hassan S, Chauhan BS, Khan F, et al. 2016. Responses of rapid viscoanalyzer profile and other rice grain qualities to exogenously applied plant growth regulators under high day and high night temperatures. PLoS ONE 11:e0159590

doi: 10.1371/journal.pone.0159590
[21]

Fahad S, Hussain S, Saud S, Hassan S, Ihsan Z, et al. 2016. Exogenously applied plant growth regulators enhance the morphophysiological growth and yield of rice under high temperature. Frontiers in Plant Science 7:1250

doi: 10.3389/fpls.2016.01250
[22]

Droby S, Porat R, Cohen L, Weiss B, Shapiro B, et al. 1999. Suppressing green mold decay in grapefruit with postharvest jasmonates application. Journal of the American Society for Horticultural Science 124:184−88

doi: 10.21273/JASHS.124.2.184
[23]

Ahmad P, Rasool S, Gul A, Sheikh SA, Akram NA, et al. 2016. Jasmonates: multifunctional roles in stress tolerance. Frontiers in Plant Science 7:813

doi: 10.3389/fpls.2016.00813
[24]

Nazim M, Ali M, Shahzad K, Ahmad F, Nawaz F, et al. 2021. Kaolin and Jasmonic acid improved cotton productivity under water stress conditions. Saudi Journal of Biological Sciences 28:6606−14

doi: 10.1016/j.sjbs.2021.07.043
[25]

Hristova VA, Popova LP. 2002. Treatment with methyl jasmonate alleviates the effects of paraquat on photosynthesis in barley plants. Photosynthetica 40:567−74

doi: /10.1023/A:1024356120016
[26]

Javid M, Sorooshzadeh A, Moradi F, Modarres-Sanavy SAM, Allahdadi I. 2011. The role of phytohormones in alleviating salt stress in crop plants. Australian Journal of Crop Science 5:726−34

[27]

Qiu Z, Guo J, Zhu A, Zhang L, Zhang M. 2014. Exogenous jasmonic acid can enhance tolerance of wheat seedlings to salt stress. Ecotoxicology and Environmental Safety 104:202−8

doi: 10.1016/j.ecoenv.2014.03.014
[28]

Rezai S, Orojloo M, Bidabadi SS, Soleimanzadeh M. 2013. Possible role of methyl jasmonate in protection to NaCl-induced salts tress in pepper cv. "Green Hashemi". International Journal of Agriculture and Crop Sciences 6:1235−38

[29]

Jiang M, Xu F, Peng M, Huang F, Meng F. 2016. Methyl jasmonate regulated diploid and tetraploid black locust tolerance to salt stress. Acta Physiologiae Plantarum 38:106

doi: 10.1007/s11738-016-2120-z
[30]

Lang D, Yu X, Jia X, Li Z, Zhang X. 2020. Methyl jasmonate improves metabolism and growth of NaCl-stressed Glycyrrhiza uralensis seedlings. Scientia Horticulturae 266:109287

doi: 10.1016/j.scienta.2020.109287
[31]

Ahmadi FI, Karimi K, Struik PC. 2018. Effect of exogenous application of methyl jasmonate on physiological and biochemical characteristics of Brassica napus L. cv. Talaye under salinity stress. South African Journal of Botany 115:5−11

doi: 10.1016/j.sajb.2017.11.018
[32]

Hu T, Yi H, Hu L, Fu J. 2013. Stomatal and metabolic limitations to photosynthesis resulting from NaCl stress in perennial ryegrass genotypes differing in salt tolerance. Journal of the American Society for Horticultural Science 138:350−57

doi: 10.21273/jashs.138.5.350
[33]

Farhangi-Abriz S, Ghassemi-Golezani K. 2019. Jasmonates: mechanisms and functions in abiotic stress tolerance of plants. Biocatalysis and Agricultural Biotechnology 20:101210

doi: 10.1016/j.bcab.2019.101210
[34]

Zhang X, Wu W, Ervin EH, Shang C, Harich K. 2018. Salt-induced injury is associated with hormonal alteration in Kentucky bluegrass. HortScience 53:97−101

doi: 10.21273/HORTSCI12413-17
[35]

Maggio A, Barbieri G, Raimondi G, Pascale S. 2010. Contrasting effects of GA3 treatments on tomato plants exposed to increasing salinity. Journal of Plant Growth Regulation 29:63−72

doi: 10.1007/s00344-009-9114-7
[36]

Jiang Y, Tang J, Yu X, Camberato J. 2013. Growth and physiological responses of diverse perennial ryegrass accessions to increasing salinity. 2012 Annu. Rep. - Purdue University. Turfgrass Science Program7−11

[37]

Shavrukov Y, Genc Y, Hayes J. 2012. The use of hydroponics in abiotic stress tolerance research. In Hydroponics- A Standard Methogology for Plant Biological Researches, ed. Asao T. Shanghai: InTech Press. pp. 39−66.https://doi.org/10.5772/35206

[38]

Hodges DM, DeLong JM, Forney CF, Prange RK. 1999. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207:604−11

doi: 10.1007/s004250050524
[39]

Zhang X, Ervin EH, Schmidt RE. 2005. The role of leaf pigment and antioxidant levels in UV-B resistance of dark- and light- green Kentucky bluegrass. Journal of the American Society for Horticultural Science 130:836−41

doi: 10.21273/JASHS.130.6.836
[40]

Giannopolitis CN, Ries SK. 1977. Superoxide dismutases: I. Occurrence in higher plants. Plant Physiology 59:309−14

doi: 10.1104/pp.59.2.309
[41]

Chance B, Maehly AC. 1955. Assay of catalases and peroxidases. In Methods in Enzymology. 2: 764–75. https://doi.org/10.1016/S0076-6879(55)02300-8

[42]

Edlund A, Eklof S, Sundberg B, Moritz T, Sandberg G. 1995. A microscale technique for gas chromatography-mass spectrometry measurements of pictogram amounts of indole-3-acetic acid in plant tissues. Plant Physiology 108:1043−47

doi: 10.1104/pp.108.3.1043