[1]

Fan J, Zhang W, Amombo E, Hu L, Kjorven JO, et al. 2020. Mechanisms of environmental stress tolerance in turfgrass. Agronomy 10:522

doi: 10.3390/agronomy10040522
[2]

Abraham EM, Meyer WA, Bonos SA, Huang B. 2008. Differential responses of hybrid bluegrass and Kentucky bluegrass to drought and heat stress. HortScience 43:2191−95

doi: 10.21273/HORTSCI.43.7.2191
[3]

Xu S, Li J, Zhang X, Wei H, Cui L. 2006. Effects of heat acclimation pretreatment on changes of membrane lipid peroxidation, antioxidant metabolites, and ultrastructure of chloroplasts in two cool-season turfgrass species under heat stress. Environmental and Experimental Botany 56:274−85

doi: 10.1016/j.envexpbot.2005.03.002
[4]

Li J, Zhao S, Yu X, Du W, Li H, et al. 2021. Role of Xanthoceras sorbifolium MYB44 in tolerance to combined drought and heat stress via modulation of stomatal closure and ROS homeostasis. Plant Physiology and Biochemistry 162:410−20

doi: 10.1016/j.plaphy.2021.03.007
[5]

Hasanuzzaman M, Bhuyan MHMB, Zulfiqar F, Raza A, Mohsin SM, et al. 2020. Reactive oxygen species and antioxidant defense in plants under abiotic stress: revisiting the crucial role of a universal defense regulator. Antioxidants 9:681

doi: 10.3390/antiox9080681
[6]

Raja V, Majeed U, Kang H, Andrabi KI, John R. 2017. Abiotic stress: interplay between ROS, hormones and MAPKs. Environmental and Experimental Botany 137:142−57

doi: 10.1016/j.envexpbot.2017.02.010
[7]

Nadarajah KK. 2020. ROS homeostasis in abiotic stress tolerance in plants. International Journal of Molecular Sciences 21:5208

doi: 10.3390/ijms21155208
[8]

Sheikh Mohammadi MH, Etemadi N, Arab MM, Aalifar M, Arab M, et al. 2017. Molecular and physiological responses of Iranian perennial ryegrass as affected by trinexapac ethyl, paclobutrazol and abscisic acid under drought stress. Plant Physiology and Biochemistry 111:129−43

doi: 10.1016/j.plaphy.2016.11.014
[9]

Gill SS, Tuteja N. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry 48:909−30

doi: 10.1016/j.plaphy.2010.08.016
[10]

Mittler R, Vanderauwera S, Gollery M, Van Breusegem F. 2004. Reactive oxygen gene network of plants. Trends in Plant Science 9:490−98

doi: 10.1016/j.tplants.2004.08.009
[11]

Racchi ML. 2013. Antioxidant defenses in plants with attention to Prunus and Citrus spp. Antioxidants 2:340−69

doi: 10.3390/antiox2040340
[12]

Alscher RG, Erturk N, Heath LS. 2002. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. Journal of Experimental Botany 53:1331−41

doi: 10.1093/jexbot/53.372.1331
[13]

Mittler R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science 7:405−10

doi: 10.1016/S1360-1385(02)02312-9
[14]

Jimenez A, Hernandez JA, del Rio LA, Sevilla F. 1997. Evidence for the presence of the ascorbate-glutathione cycle in mitochondria and peroxisomes of pea leaves. Plant Physiology 114:275−84

doi: 10.1104/pp.114.1.275
[15]

Tripathi DK, Mishra RK, Singh S, Singh S, Vishwakarma K, et al. 2017. Nitric oxide ameliorates zinc oxide nanoparticles phytotoxicity in wheat seedlings: implication of the ascorbate-glutathione cycle. Frontiers in Plant Science 8:1

doi: 10.3389/fpls.2017.00001
[16]

Soliman WS, Fujimori M, Tase K, Sugiyama SI. 2011. Oxidative stress and physiological damage under prolonged heat stress in C3 grass Lolium perenne. Grassland Science 57:101−6

doi: 10.1111/j.1744-697X.2011.00214.x
[17]

Soliman WS, Fujimori M, Tase K, Sugiyama SI. 2012. Heat tolerance and suppression of oxidative stress: comparative analysis of 25 cultivars of the C3 grass Lolium perenne. Environmental and Experimental Botany 78:10−17

doi: 10.1016/j.envexpbot.2011.12.013
[18]

Xu Y, Xu Q, Huang B. 2015. Ascorbic acid mitigation of water stress-inhibition of root growth in association with oxidative defense in tall fescue (Festuca arundinacea Schreb. ). Frontiers in Plant Science 6:807

doi: 10.3389/fpls.2015.00807
[19]

Li Z, Peng Y, Huang B. 2018. Alteration of transcripts of stress-protective genes and transcriptional factors by γ-aminobutyric acid (GABA) associated with improved heat and drought tolerance in creeping bentgrass (Agrostis stolonifera). International Journal of Molecular Sciences 19:1623

doi: 10.3390/ijms19061623
[20]

Liu X, Huang B. 2003. Mowing height effects on summer turf growth and physiological activities for two creeping bentgrass cultivars. HortScience 38:444−48

doi: 10.21273/HORTSCI.38.3.444
[21]

Liu X, Huang B. 2001. Seasonal changes and cultivar difference in turf quality, photosynthesis, and respiration of creeping bentgrass. HortScience 36:1131−35

doi: 10.21273/HORTSCI.36.6.1131
[22]

Rossi S, Chapman C, Huang B. 2020. Suppression of heat-induced leaf senescence by γ-aminobutyric acid, proline, and ammonium nitrate through regulation of chlorophyll degradation in creeping bentgrass. Environmental and Experimental Botany 177:104−16

doi: 10.1016/j.envexpbot.2020.104116
[23]

Rossi S, Chapman C, Yuan B, Huang B. 2021. Improved heat tolerance in creeping bentgrass by γ-aminobutyric acid, proline, and inorganic nitrogen associated with differential regulation of amino acid metabolism. Plant Growth Regulation 93:231−42

doi: 10.1007/s10725-020-00681-6
[24]

Ali EF, El-Shehawi AM, Ibrahim OHM, Abdul-Hafeez EY, Moussa MM, et al. 2021. A vital role of chitosan nanoparticles in improvisation the drought stress tolerance in Catharanthus roseus (L. ) through biochemical and gene expression modulation. Plant Physiology and Biochemistry 161:166−75

doi: 10.1016/j.plaphy.2021.02.008
[25]

Kurita K. 2006. Chitin and chitosan: functional biopolymers from marine crustaceans. Marine Biotechnology 8:203−26

doi: 10.1007/s10126-005-0097-5
[26]

Rabêlo VM, Magalhães PC, Bressanin LA, Carvalho DT, Reis COD, et al. 2019. The foliar application of a mixture of semisynthetic chitosan derivatives induces tolerance to water deficit in maize, improving the antioxidant system and increasing photosynthesis and grain yield. Scientific Reports 9:8164

doi: 10.1038/s41598-019-44649-7
[27]

Turk H. 2019. Chitosan-induced enhanced expression and activation of alternative oxidase confer tolerance to salt stress in maize seedlings. Plant Physiology and Biochemistry 141:415−22

doi: 10.1016/j.plaphy.2019.06.025
[28]

Zhang Y, Li Z, Li Y, Zhang X, Ma X, et al. 2018. Chitosan and spermine enhance drought resistance in white clover, associated with changes in endogenous phytohormones and polyamines, and antioxidant metabolism. Functional Plant Biology 45:1205−22

doi: 10.1071/FP18012
[29]

Hao T, Yang Z, Liang J, Yu J, Liu J. 2023. Foliar application of carnosine and chitosan improving drought tolerance in bermudagrass. Agronomy 13:442

doi: 10.3390/agronomy13020442
[30]

Liu Z, Liu T, Liang L, Li Z, Hassan MJ, et al. 2020. Enhanced photosynthesis, carbohydrates, and energy metabolism associated with chitosan-induced drought tolerance in creeping bentgrass. Crop Science 60:1064−76

doi: 10.1002/csc2.20026
[31]

Seon Sim H, Su Jo J, Jeong Woo U, Jun Jo W, Hyun Moon Y, et al. 2022. Abscisic acid, carbohydrate, and glucosinolate metabolite profiles in kimchi cabbage treated with extremely high temperatures and chitosan foliar application. Scientia Horticulturae 304:111311

doi: 10.1016/j.scienta.2022.111311
[32]

Shakoor A, Saleem MF, Sarwar M, Zia Ul Haq M. 2023. Exogenous application of chitosan mediated biochemical, phenological, quality, and yield attributes of heat-stressed cotton (Gossypium hirsutum L.). Gesunde Pflanzen

doi: 10.1007/s10343-023-00832-5
[33]

Huang C, Tian Y, Zhang B, Hassan MJ, Li Z, et al. 2021. Chitosan (CTS) alleviates heat-induced leaf senescence in creeping bentgrass by regulating chlorophyll metabolism, antioxidant defense, and the heat shock pathway. Molecules 26:5337

doi: 10.3390/molecules26175337
[34]

Li Q, Li R, He F, Yang Z, Yu J. 2022. Growth and physiological effects of chitosan on heat tolerance in creeping bentgrass (Agrostis stolonifera). Grass Research 2:6

doi: 10.48130/GR-2022-0006
[35]

Qian YL, Engelke MC, Foster MJV, Reynolds S. 1998. Trinexapac-ethyl restricts shoot growth and improves quality of `Diamond' zoysiagrass under shade. HortScience 33:1019−22

doi: 10.21273/HORTSCI.33.6.1019
[36]

Zhang J, Kirkham MB. 1996. Antioxidant responses to drought in sunflower and sorghum seedlings. New Phytologist 132:361−73

doi: 10.1111/j.1469-8137.1996.tb01856.x
[37]

Bian S, Jiang Y. 2009. Reactive oxygen species, antioxidant enzyme activities and gene expression patterns in leaves and roots of Kentucky bluegrass in response to drought stress and recovery. Scientia Horticulturae 120:264−70

doi: 10.1016/j.scienta.2008.10.014
[38]

Bradford, MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72:248−54

doi: 10.1016/0003-2697(76)90527-3
[39]

Xu Y, Burgess P, Huang B. 2015. Root antioxidant mechanisms in relation to root thermotolerance in perennial grass species contrasting in heat tolerance. PLoS One 10:e138268

doi: 10.1371/journal.pone.0138268
[40]

Schmittgen TD, Livak KJ. 2008. Analyzing real-time PCR data by the comparative CT method. Nature Protocols 3:1101−08

doi: 10.1038/nprot.2008.73
[41]

Zhang X, Ervin EH. 2008. Impact of seaweed extract−based cytokinins and zeatin riboside on creeping bentgrass heat tolerance. Crop Science 48:364−70

doi: 10.2135/cropsci2007.05.0262
[42]

Larkindale J, Huang B. 2005. Effects of abscisic acid, salicylic acid, ethylene and hydrogen peroxide in thermotolerance and recovery for creeping bentgrass. Plant Growth Regulation 47:17−28

doi: 10.1007/s10725-005-1536-z
[43]

Pantoja-Benavides AD, Garces-Varon G, Restrepo-Díaz H. 2021. Foliar growth regulator sprays induced tolerance to combined heat stress by enhancing physiological and biochemical responses in rice. Frontiers in Plant Science 12:702892

doi: 10.3389/fpls.2021.702892
[44]

Chalanika De Silva HC, Asaeda T. 2017. Effects of heat stress on growth, photosynthetic pigments, oxidative damage and competitive capacity of three submerged macrophytes. Journal of Plant Interactions 12:228−36

doi: 10.1080/17429145.2017.1322153
[45]

Jiang Y, Huang B. 2001. Drought and heat stress injury to two cool-season turfgrasses in relation to antioxidant metabolism and lipid peroxidation. Crop Science 41:436−42

doi: 10.2135/cropsci2001.412436x
[46]

Jahan MS, Shu S, Wang Y, Chen Z, He M, et al. 2019. Melatonin alleviates heat-induced damage of tomato seedlings by balancing redox homeostasis and modulating polyamine and nitric oxide biosynthesis. BMC Plant Biology 19:414

doi: 10.1186/s12870-019-1992-7
[47]

Katuwal KB, Rowe S, Jespersen D. 2021. The use of 5-aminolevulinic acid to reduce heat-stress-related damages in tall fescue. Crop Science 61:3206−18

doi: 10.1002/csc2.20294
[48]

Khanna-Chopra R, Chauhan S. 2015. Wheat cultivars differing in heat tolerance show a differential response to oxidative stress during monocarpic senescence under high temperature stress. Protoplasma 252:1241−51

doi: 10.1007/s00709-015-0755-z
[49]

Li C, Ma M, Zhang T, Feng P, Chen X, et al. 2021. Comparison of photosynthetic activity and heat tolerance between near isogenic lines of wheat with different photosynthetic rates. PLoS One 16:e0255896

doi: 10.1371/journal.pone.0255896
[50]

Zhang L, Hu T, Amombo E, Wang G, Xie Y, et al. 2017. The alleviation of heat damage to photosystem II and enzymatic antioxidants by exogenous spermidine in tall fescue. Frontiers in Plant Science 8:1747

doi: 10.3389/fpls.2017.01747
[51]

Zhang J, Xing J, Lu Q, Yu G, Xu B, et al. 2019. Transcriptional regulation of chlorophyll-catabolic genes associated with exogenous chemical effects and genotypic variations in heat-induced leaf senescence for perennial ryegrass. Environmental and Experimental Botany 167:103858

doi: 10.1016/j.envexpbot.2019.103858
[52]

Su Y, Huang Y, Dong X, Wang R, Tang M, et al. 2021. Exogenous methyl jasmonate improves heat tolerance of perennial ryegrass through alteration of osmotic adjustment, antioxidant defense, and expression of jasmonic acid-responsive genes. Frontiers in Plant Science 12:664519

doi: 10.3389/fpls.2021.664519
[53]

Hu L, Bi A, Hu Z, Amombo E, Li H, et al. 2018. Antioxidant metabolism, photosystem II, and fatty acid composition of two tall fescue genotypes with different heat tolerance under high temperature stress. Frontiers in Plant Science 9:1242

doi: 10.3389/fpls.2018.01242
[54]

Hasanuzzaman M, Bhuyan MHMB, Anee TI, Parvin K, Nahar K, et al. 2019. Regulation of ascorbate-glutathione pathway in mitigating oxidative damage in plants under abiotic stress. Antioxidants 8:384

doi: 10.3390/antiox8090384
[55]

Li C, Han Y, Hao J, Qin X, Liu C, et al. 2020. Effects of exogenous spermidine on antioxidants and glyoxalase system of lettuce seedlings under high temperature. Plant Signaling & Behavior 15:1824697

doi: 10.1080/15592324.2020.1824697
[56]

Buttar ZA, Wu S, Arnao MB, Wang C, Ullah I, et al. 2020. Melatonin suppressed the heat stress-induced damage in wheat seedlings by modulating the antioxidant machinery. Plants 9:809

doi: 10.3390/plants9070809
[57]

Xu Q, Huang B. 2004. Antioxidant metabolism associated with summer leaf senescence and turf quality decline for creeping bentgrass. Crop Science 44:553−60

doi: 10.2135/cropsci2004.5530
[58]

Lin KH, Huang HC, Lin CY. 2010. Cloning, expression and physiological analysis of broccoli catalase gene and Chinese cabbage ascorbate peroxidase gene under heat stress. Plant Cell Reports 29:575−93

doi: 10.1007/s00299-010-0846-4
[59]

Du H, Zhou P, Huang B. 2013. Antioxidant enzymatic activities and gene expression associated with heat tolerance in a cool-season perennial grass species. Environmental and Experimental Botany 87:159−66

doi: 10.1016/j.envexpbot.2012.09.009