[1] |
Li L, Jiang R, He Z, Chen XM, Zhou X. 2020. Trajectory data-based traffic flow studies: a revisit. Transportation Research Part C: Emerging Technologies 114:225−40 doi: 10.1016/j.trc.2020.02.016 |
[2] |
Wang X, Khattak AJ, Liu J, Masghati-Amoli G, Son S. 2015. What is the level of volatility in instantaneous driving decisions? Transportation Research Part C: Emerging Technologies 58:413−27 doi: 10.1016/j.trc.2014.12.014 |
[3] |
Liu J, Khattak A, Wang X. 2017. A comparative study of driving performance in metropolitan regions using large-scale vehicle trajectory data: Implications for sustainable cities. International Journal of Sustainable Transportation 11(3):170−85 doi: 10.1080/15568318.2016.1230803 |
[4] |
Liu J, Khattak A, Wang X. 2015. The role of alternative fuel vehicles: Using behavioral and sensor data to model hierarchies in travel. Transportation Research Part C: Emerging Technologies 55:379−92 doi: 10.1016/j.trc.2015.01.028 |
[5] |
Liu J, Khattak AJ. 2016. Delivering improved alerts, warnings, and control assistance using basic safety messages transmitted between connected vehicles. Transportation Research Part C: Emerging Technologies 68:83−100 doi: 10.1016/j.trc.2016.03.009 |
[6] |
Rios-Torres J, Liu J, Khattak A. 2019. Fuel consumption for various driving styles in conventional and hybrid electric vehicles: Integrating driving cycle predictions with fuel consumption optimization. International Journal of Sustainable Transportation 13(2):123−37 doi: 10.1080/15568318.2018.1445321 |
[7] |
Liu J, Wang X, Khattak A. 2016. Customizing driving cycles to support vehicle purchase and use decisions: Fuel economy estimation for alternative fuel vehicle users. Transportation Research Part C: Emerging Technologies 67:280−98 doi: 10.1016/j.trc.2016.02.016 |
[8] |
Fu X, Nie Q, Liu J, Khattak A, Hainen A, et al. 2022. Constructing spatiotemporal driving volatility profiles for connected and automated vehicles in existing highway networks. Journal of Intelligent Transportation Systems 26(5):572−85 doi: 10.1080/15472450.2021.1944133 |
[9] |
Liu J, Khattak A. 2020. Informed decision-making by integrating historical on-road driving performance data in high-resolution maps for connected and automated vehicles. Journal of Intelligent Transportation Systems 24(1):11−23 doi: 10.1080/15472450.2019.1699076 |
[10] |
Wolshon B, Hatipkarasulu Y. 2000. Results of car following analyses using global positioning system. Journal of Transportation Engineering 126:324−31 doi: 10.1061/(asce)0733-947x(2000)126:4(324) |
[11] |
Kerner BS, Demir C, Herrtwich RG, Klenov SL, Rehborn H, et al. 2005. Traffic state detection with floating car data in road networks. Proceedings 2005 IEEE Intelligent Transportation Systems, 16 September 2005, Vienna, Austria. USA: IEEE. pp. 44−49. https://doi.org/10.1109/ITSC.2005.1520133 |
[12] |
NGSIM. 2006. The Next Generation Simulation Program. http://ops.fhwa.dot.gov/trafficanalysistools/ngsim.htm |
[13] |
Knoop VL, Hoogendoorn SP, van Zuylen HJ. 2008. Capacity reduction at incidents: Empirical data collected from a helicopter. Transportation Research Record: Journal of the Transportation Research Board 2071:19−25 doi: 10.3141/2071-03 |
[14] |
Zhang W, Jordan G, Livshits V. 2016. Generating a vehicle trajectory database from time-lapse aerial photography. Transportation Research Record: Journal of the Transportation Research Board 2594:148−58 doi: 10.3141/2594-18 |
[15] |
Krajewski R, Bock J, Kloeker L, Eckstein L. 2018. The highD dataset: A drone dataset of naturalistic vehicle trajectories on German highways for validation of highly automated driving systems. 2018 21st International Conference on Intelligent Transportation Systems (ITSC), 4−7 November 2018, Maui, HI, USA. USA: IEEE. pp. 2118−25. https://doi.org/10.1109/ITSC.2018.8569552 |
[16] |
NHTSA. 2015. Safety Pilot Model Deployment. https://catalog.data.gov/dataset/safety-pilot-model-deployment-data |
[17] |
Wiggers, Kyle. 2019. Lyft releases open source data set for autonomous vehicle development. https://venturebeat.com/2019/07/23/lyft-releases-open-source-data-set-for-autonomous-vehicle-development/ (Accessed October 6, 2019) |
[18] |
Waymo. 2020. Waymo Open Dataset. https://waymo.com/open/ (Accessed July 6, 2020) |
[19] |
Agarwal S, Vora A, Pandey G, Williams W, Kourous H, et al. 2020. Ford multi-av seasonal dataset. The International Journal of Robotics Research 39(12):1367−76 doi: 10.1177/02783649209614 |
[20] |
Deo N, Trivedi MM. 2018. Convolutional social pooling for vehicle trajectory prediction. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 18-22 June 2018, Salt Lake City, UT, USA. USA: IEEE. pp. 1549−15498. https://doi.org/10.1109/CVPRW.2018.00196 |
[21] |
Zhao T, Xu Y, Monfort M, Choi W, Baker C, et al. 2019. Multi-agent tensor fusion for contextual trajectory prediction. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15−20 June 2019. USA: IEEE. pp. 12118−26. https://doi.org/10.1109/CVPR.2019.01240 |
[22] |
Hou L, Xin L, Li SE, Cheng B, Wang W. 2020. Interactive trajectory prediction of surrounding road users for autonomous driving using structural-LSTM network. IEEE Transactions on Intelligent Transportation Systems 21:4615−25 doi: 10.1109/TITS.2019.2942089 |
[23] |
Song R, Li B. 2022. Surrounding vehicles' lane change maneuver prediction and detection for intelligent vehicles: a comprehensive review. IEEE Transactions on Intelligent Transportation Systems 23:6046−62 doi: 10.1109/TITS.2021.3076164 |
[24] |
Zheng Y. 2015. Trajectory data mining: An overview. ACM Transactions on Intelligent Systems and Technology 6:1−41 doi: 10.1145/2743025 |
[25] |
Macadam CC. 2003. Understanding and modeling the human driver. Vehicle System Dynamics 40:101−34 doi: 10.1076/vesd.40.1.101.15875 |
[26] |
Lefèvre S, Vasquez D, Laugier C. 2014. A survey on motion prediction and risk assessment for intelligent vehicles. ROBOMECH Journal 1:1 doi: 10.1186/s40648-014-0001-z |
[27] |
Huang Y, Du J, Yang Z, Zhou Z, Zhang L, et al. 2022. A survey on trajectory-prediction methods for autonomous driving. IEEE Transactions on Intelligent Vehicles 7:652−74 doi: 10.1109/TIV.2022.3167103 |
[28] |
Kim B, Kang CM, Kim J, Lee SH, Chung CC, et al. 2017. Probabilistic vehicle trajectory prediction over occupancy grid map via recurrent neural network. 2017 IEEE 20th International Conference on Intelligent Transportation Systems, Yokohama, Japan, 16−19 October 2017. USA: IEEE. pp. 399−404. https://doi.org/10.1109/ITSC.2017.8317943 |
[29] |
Zheng J, Suzuki K, Fujita M. 2014. Predicting driver's lane-changing decisions using a neural network model. Simulation Modelling Practice and Theory 42:73−83 doi: 10.1016/j.simpat.2013.12.007 |
[30] |
Dang HQ, Fürnkranz J, Biedermann A, Hoepfl M. 2017. Time-to-lane-change prediction with deep learning. 2017 IEEE 20th International Conference on Intelligent Transportation Systems. Yokohama, Japan, 16−19 October 2017. USA: IEEE. pp. 1−7. https://doi.org/10.1109/ITSC.2017.8317674 |
[31] |
Benterki A, Boukhnifer M, Judalet V, Choubeila M. 2019. Prediction of surrounding vehicles lane change intention using machine learning. 2019 10th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS), Metz, France, 18−21 September 2019. USA: IEEE. pp. 839−43. https://doi.org/10.1109/IDAACS.2019.8924448 |
[32] |
Tang L, Wang H, Zhang W, Mei Z, Li L. 2020. Driver lane change intention recognition of intelligent vehicle based on long short-term memory network. IEEE Access 8:136898−905 doi: 10.1109/ACCESS.2020.3011550 |
[33] |
Casas S, Luo W, Urtasun R. 2018. Intentnet: Learning to predict intention from raw sensor data. 2nd Conference on Robot Learning (CoRL), Zurich, Swizerland. Zürich, Switzerland: PMLR. pp. 947−56. |
[34] |
Chai Y, Sapp B, Bansal M, Anguelov D. 2019. MultiPath: multiple probabilistic anchor trajectory hypotheses for behavior prediction. arXiv Preprint doi: 10.48550/arXiv.1910.05449 |
[35] |
Zeng W, Luo W, Suo S, Sadat A, Yang B, et al. 2019. End-to-end interpretable neural motion planner. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15−20 June 2019. USA: IEEE, pp. 8652−61. https://doi.org/10.1109/CVPR.2019.00886 |
[36] |
Hong J, Sapp B, Philbin J. 2019. Rules of the road: predicting driving behavior with a convolutional model of semantic interactions. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 15-20 June 2019, Long Beach, CA, USA. USA: IEEE, 8446−54 https://doi.org/10.1109/CVPR.2019.00865 |
[37] |
Tan HS, Huang J. 2006. DGPS-based vehicle-to-vehicle cooperative collision warning: engineering feasibility viewpoints. IEEE Transactions on Intelligent Transportation Systems 7:415−28 doi: 10.1109/TITS.2006.883938 |
[38] |
Polychronopoulos A, Tsogas M, Amditis AJ, Andreone L. 2007. Sensor fusion for predicting vehicles' path for collision avoidance systems. IEEE Transactions on Intelligent Transportation Systems 8:549−62 doi: 10.1109/TITS.2007.903439 |
[39] |
Broadhurst A, Baker S, Kanade T. 2005. Monte Carlo Road safety reasoning. IEEE Proceedings. Intelligent Vehicles Symposium, Las Vegas, NV, USA, 6-8 June 2005. USA: IEEE. pp. 319−24. https://doi.org/10.1109/IVS.2005.1505122 |
[40] |
Joseph J, Doshi-Velez F, Huang AS, Roy N. 2011. A Bayesian nonparametric approach to modeling motion patterns. Autonomous Robots 31:383−400 doi: 10.1007/s10514-011-9248-x |
[41] |
Aoude G, Joseph J, Roy N, How J. 2011. Mobile Agent Trajectory Prediction using Bayesian Nonparametric Reachability Trees. Infotech@Aerospace Conferences, 29−31 March 2011, St. Louis, Missouri. Reston, Virigina: AIAA. pp. 1−17. https://doi.org/10.2514/6.2011-1512 |
[42] |
Käfer E, Hermes C, Wöhler C, Ritter H, Kummert F. Recognition of situation classes at road intersections. 2010 IEEE International Conference on Robotics and Automation. Anchorage, AK, USA, 3−7 May 2010. USA: IEEE. pp. 3960−65. https://doi.org/10.1109/ROBOT.2010.5509919 |
[43] |
Lawitzky A, Althoff D, Passenberg CF, Tanzmeister G, Wollherr D, et al. 2013. Interactive scene prediction for automotive applications. 2013 IEEE Intelligent Vehicles Symposium, Gold Coast, QLD, Australia, 23-26 June 2013. USA: IEEE. pp. 1028−33 https://doi.org/10.1109/IVS.2013.6629601 |
[44] |
Oliver N, Pentland AP. 2000. Graphical models for driver behavior recognition in a SmartCar. Proceedings of the IEEE Intelligent Vehicles Symposium 2000 (Cat. No. 00TH8511), Dearborn, MI, USA, 5 October 2000. USA: IEEE. pp. 7−12 https://doi.org/10.1109/IVS.2000.898310 |
[45] |
Liebner M, Baumann M, Klanner F, Stiller C. 2012. Driver intent inference at urban intersections using the intelligent driver model. 2012 IEEE Intelligent Vehicles Symposium, Madrid, Spain, 3-7 June 2012. USA: IEEE. pp. 1162−67. https://doi.org/10.1109/IVS.2012.6232131 |
[46] |
Mahajan V, Katrakazas C, Antoniou C. 2020. Prediction of lane-changing maneuvers with automatic labeling and deep learning. Transportation Research Record: Journal of the Transportation Research Board 2674:336−47 doi: 10.1177/0361198120922210 |
[47] |
Li D, Ma C. 2022. Research on lane change prediction model based on GBDT. Physica A: Statistical Mechanics and Its Applications 608:128290 doi: 10.1016/j.physa.2022.128290 |
[48] |
Xue Q, Xing Y, Lu J. 2022. An integrated lane change prediction model incorporating traffic context based on trajectory data. Transportation Research Part C: Emerging Technologies 141:103738 doi: 10.1016/j.trc.2022.103738 |
[49] |
Greff K, Srivastava RK, Koutník J, Steunebrink BR, Schmidhuber J. 2017. LSTM: a search space odyssey. IEEE Transactions on Neural Networks and Learning Systems 28:2222−32 doi: 10.1109/TNNLS.2016.2582924 |
[50] |
Zeng, C., Ma, C., Wang, K. and Cui, Z., 2022. Predicting vacant parking space availability: a DWT-Bi-LSTM model. Physica A: Statistical Mechanics and its Applications, 599, p.127498 |
[51] |
Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, et al. 2017. Attention is all you need. Advances in neural information processing systems 30 (NIPS 2017). https://proceedings.neurips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html |
[52] |
Liu Y, Zhang J, Fang L, Jiang Q, Zhou B. 2021. Multimodal motion prediction with stacked transformers. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20-25 June 2021. USA: IEEE. pp. 7573−82. https://doi.org/10.1109/CVPR46437.2021.00749 |
[53] |
Alahi A, Goel K, Ramanathan V, Robicquet A, Li F, et al. 2016. Social LSTM: Human Trajectory Prediction in Crowded Spaces. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, June 27-30, 2016. USA: IEEE. pp. 961−71. https://doi.org/10.1109/CVPR.2016.110 |
[54] |
Messaoud K, Yahiaoui I, Verroust-Blondet A, Nashashibi F. 2019. Non-local Social Pooling for Vehicle Trajectory Prediction2019 IEEE Intelligent Vehicles Symposium (IV). June 9-12, 2019. Paris, France. IEEE. pp. 975−80 |
[55] |
Messaoud K, Yahiaoui I, Verroust-Blondet A, Nashashibi F. 2021. Attention based vehicle trajectory prediction. IEEE Transactions on Intelligent Vehicles 6:175−85 doi: 10.1109/TIV.2020.2991952 |
[56] |
Gao J, Sun C, Zhao H, Shen Y, Anguelov D, et al. 2020. VectorNet: Encoding HD Maps and Agent Dynamics From Vectorized Representation. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 13-19, 2020. Seattle, WA, USA. USA: IEEE. pp. 11525−33. https://doi.org/10.1109/IVS.2019.8813829 |
[57] |
Zhao H, Gao J, Lan T, Sun C, Sapp B, et al. 2021. Tnt: Target-driven trajectory prediction. Conference on Robot Learning (CoRL 2021), London, United Kingdom & Virtual, 8−11 Nov, 2021. PMLR. pp. 895−904. |
[58] |
Gu J, Sun C, Zhao H. DenseTNT: end-to-end trajectory prediction from dense goal sets. 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 10−17 October 2021. USA: IEEE. pp. 15283−92. https://doi.org/10.1109/ICCV48922.2021.01502 |
[59] |
Choi S, Kim J, Yeo H. 2019. Attention-based recurrent neural network for urban vehicle trajectory prediction. Procedia Computer Science 151:327−34 doi: 10.1016/j.procs.2019.04.046 |
[60] |
Lin L, Li W, Bi H, Qin L. 2022. Vehicle trajectory prediction using LSTMs with spatial–temporal attention mechanisms. IEEE Intelligent Transportation Systems Magazine 14:197−208 doi: 10.1109/MITS.2021.3049404 |
[61] |
Hawkins AJ. 2019. Waymo is making some of its self-driving car data available for free to researchers. www.theverge.com/2019/8/21/20822755/waymo-self-driving-car-data-set-free-research (Retrieved 8 June 2022 ) |
[62] |
Hu X, Zheng Z, Chen D, Zhang X, Sun J. 2022. Processing, assessing, and enhancing the Waymo autonomous vehicle open dataset for driving behavior research. Transportation Research Part C: Emerging Technologies 134:103490 doi: 10.1016/j.trc.2021.103490 |
[63] |
Ettinger S, Cheng S, Caine B, Liu C, Zhao H, et al. Large scale interactive motion forecasting for autonomous driving: the waymo open motion dataset. 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 10-17 October 2021. USA: IEEE. pp. 9690−99. https://doi.org/10.1109/ICCV48922.2021.00957 |
[64] |
Park SH, Kim B, Kang CM, Chung CC, Choi JW. Sequence-to-sequence prediction of vehicle trajectory via LSTM encoder-decoder architecture. 2018 IEEE Intelligent Vehicles Symposium. Changshu, China, 26−30 June 2018. USA: IEEE. pp. 1672−78. https://doi.org/10.1109/IVS.2018.8500658 |
[65] |
Liu J, Mao X, Fang Y, Zhu D, Meng MQH. 2021. A survey on deep-learning approaches for vehicle trajectory prediction in autonomous driving. 2021 IEEE International Conference on Robotics and Biomimetics, Sanya, China, 27-31 December 2021. USA: IEEE. pp. 978−85. https://doi.org/10.1109/ROBIO54168.2021.9739407 |
[66] |
Xing Y, Lv C, Wang H, Wang H, Ai Y, et al. 2019. Driver lane change intention inference for intelligent vehicles: framework, survey, and challenges. IEEE Transactions on Vehicular Technology 68:4377−90 doi: 10.1109/TVT.2019.2903299 |
[67] |
Kaur H, Pannu HS, Malhi AK. 2020. A systematic review on imbalanced data challenges in machine learning. ACM Computing Surveys 52:1−36 doi: 10.1145/3343440 |