[1]

Koutsos E, Modica B, Freel T. 2022. Immunomodulatory potential of black soldier fly larvae: Applications beyond nutrition in animal feeding programs. Translational Animal Science 6:txac084

doi: 10.1093/tas/txac084
[2]

Kumar V, Fawole FJ, Romano N, Hossain MS, Labh SN, et al. 2021. Insect (black soldier fly, Hermetia illucens) meal supplementation prevents the soybean meal-induced intestinal enteritis in rainbow trout and health benefits of using insect oil. Fish & Shellfish Immunology 109:116−24

doi: 10.1016/j.fsi.2020.12.008
[3]

Agbohessou PS, Mandiki SNM, Mbondo Biyong SR, Cornet V, Nguyen TM, et al. 2022. Intestinal histopathology and immune responses following Escherichia coli lipopolysaccharide challenge in Nile tilapia fed enriched black soldier fly larval (BSF) meal supplemented with chitinase. Fish & Shellfish Immunology 128:620−33

doi: 10.1016/j.fsi.2022.08.050
[4]

Dörper A, Veldkamp T, Dicke M. 2021. Use of black soldier fly and house fly in feed to promote sustainable poultry production. Journal of Insects as Food and Feed 7:761−80

doi: 10.3920/jiff2020.0064
[5]

Lopes IG, Yong JWH, Lalander C. 2022. Frass derived from black soldier fly larvae treatment of biodegradable wastes: A critical review and future perspectives. Waste Management 142:65−76

doi: 10.1016/j.wasman.2022.02.007
[6]

Klammsteiner T, Turan V, Fernández-Delgado Juárez M, Oberegger S, et al. 2020. Suitability of black soldier fly frass as soil amendment and implication for organic waste hygienization. Agronomy 10:1578

doi: 10.3390/agronomy10101578
[7]

Chirere TES, Khalil S, Lalander C. 2021. Fertiliser effect on Swiss chard of black soldier fly larvae-frass compost made from food waste and faeces. Journal of Insects as Food and Feed 7:457−69

doi: 10.3920/JIFF2020.0120
[8]

Chiam Z, Lee JTE, Tan JKN, Song S, Arora S, et al. 2021. Evaluating the potential of okara-derived black soldier fly larval frass as a soil amendment. Journal of Environmental Management 286:112163

doi: 10.1016/j.jenvman.2021.112163
[9]

Setti L, Francia E, Pulvirenti A, Gigliano S, Zaccardelli M, et al. 2019. Use of black soldier fly (Hermetia illucens (L.), Diptera: Stratiomyidae) larvae processing residue in peat-based growing media. Waste Management 95:278−88

doi: 10.1016/j.wasman.2019.06.017
[10]

Agustiyani D, Agandi R, Arinafril, Nugroho AA, Antonius S. 2021. The effect of application of compost and frass from black soldier fly larvae (Hermetia illucens L.) on growth of pakchoi (Brassica rapa L.). IOP Conference Series: Earth and Environmental Science 762:012036

doi: 10.1088/1755-1315/762/1/012036
[11]

Beesigamukama D, Mochoge B, Korir NK, Fiaboe KKM, Nakimbugwe D, et al. 2020. Exploring black soldier fly frass as novel fertilizer for improved growth, yield, and nitrogen use efficiency of maize under field conditions. Frontiers in Plant Science 11:574592

doi: 10.3389/fpls.2020.574592
[12]

Romano N, Fischer H, Powell A, Sinha AK, Islam S, et al. 2022. Applications of black soldier fly (Hermetia illucens) larvae frass on sweetpotato slip production, mineral content and benefit-cost analysis. Agronomy 12:928

doi: 10.3390/agronomy12040928
[13]

Shaviv A. 2001. Advances in controlled-release fertilizers. Advances In Agronomy 71:1−49

doi: 10.1016/S0065-2113(01)71011-5
[14]

Geng W, Zhao Y, Mao Z, Wang X, Wu N, et al. 2022. The effects of combined use of black soldier fly larvae frass fertilizer with exogenous selenium on rice growth and accumulation of heavy metals. Journal of Soil Science and Plant Nutrition 22:5133−43

doi: 10.1007/s42729-022-00989-4
[15]

Basu M, Bhadoria PBS, Mahapatra SC. 2008. Growth, nitrogen fixation, yield and kernel quality of peanut in response to lime, organic and inorganic fertilizer levels. Bioresource Technology 99:4675−83

doi: 10.1016/j.biortech.2007.09.078
[16]

Zhang F, Xu P, Tang S, Chen J, Xie K, et al. 2008. Effects of chemical fertilizer and composts produced from chicken, swine and cattle manures on yields and quality of leaf vegetables. Chinese Agricultural Science Bulletin 24:283−86

[17]

Chen X, Cui Z, Fan M, Vitousek P, Zhao M, et al. 2014. Producing more grain with lower environmental costs. Nature 514:486−89

doi: 10.1038/nature13609
[18]

Vo MH, Wang CH. 2015. Effects of manure composts and their combination with inorganic fertilizer on acid soil properties and the growth of muskmelon (Cucumis melo L.). Compost Science & Utilization 23:117−27

doi: 10.1080/1065657X.2014.984368
[19]

Sibley JL, Eakes DJ, Gilliam CH, Keever GJ, Dozier WA, et al. 1996. Foliar SPAD-502 meter values, nitrogen levels, and extractable chlorophyll for red maple selections. HortScience 31:468−70

doi: 10.21273/hortsci.31.3.468
[20]

Aono M, Kubo A, Saji H, Tanaka K, Kondo N. 1993. Enhanced tolerance to photooxidative stress of transgenic Nicotiana tabacum with high chloroplastic glutathione reductase activity. Plant and Cell Physiology 34:129−35

doi: 10.1093/oxfordjournals.pcp.a078386
[21]

Inskeep WP, Bloom PR. 1985. Extinction coefficients of chlorophyll a and b in N,N-dimethylformamide and 80% acetone. Plant Physiology 77:483−85

doi: 10.1104/pp.77.2.483
[22]

Oxley D, Currie G, Bacic A. 2006. Monosaccharide composition analysis: Alditol acetates. Cold Spring Harbor Protocols 2006(1):4246

doi: 10.1101/pdb.prot4246
[23]

Barragán-Fonseca KY, Nurfikari A, van de Zande EM, Wantulla M, van Loon JJA, et al. 2022. Insect frass and exuviae to promote plant growth and health. Trends in Plant Science 27:646−54

doi: 10.1016/j.tplants.2022.01.007
[24]

Wantulla M, van Loon JJA, Dicke M. 2023. Soil amendment with insect exuviae causes species-specific changes in the rhizosphere bacterial community of cabbage plants. Applied Soil Ecology 188:104854

doi: 10.1016/j.apsoil.2023.104854
[25]

Wantulla M, van Zadelhoff K, van Loon JJA, Dicke M. 2023. The potential of soil amendment with insect exuviae and frass to control the cabbage root fly. Journal of Applied Entomology 147:181−91

doi: 10.1111/jen.13097
[26]

Li J, Cao X, Jia X, Liu L, Cao H, et al. 2021. Iron deficiency leads to chlorosis through impacting chlorophyll synthesis and nitrogen metabolism in Areca catechu L. Frontiers in Plant Science 12:710093

doi: 10.3389/fpls.2021.710093
[27]

Taiz L, Zeiger E. 2006. Plant Physiology. 4th Edition. Sunderland, MA, USA: Sinauer Associates, Inc.

[28]

Nan F, Sun Y, Liang H, Zhou J, Ma X, et al. 2022. Mannose: A sweet option in the treatment of cancer and inflammation. Frontiers in Pharmacology 13:877543

doi: 10.3389/fphar.2022.877543