-
After five weeks, the weight, stem diameter and height of the kale in the control (weekly applications of a synthetic fertilizer) was significantly less than the ½ fert frass treatment. While weight was significantly lower for kale grown with only BSFL frass compared to the ½ fert frass treatment, there was no significant difference in the stem diameter or height (Fig. 1).
Figure 1.
Mean (± SE) growth of kale when receiving weekly applications of a synthetic fertilizer (control), diluted synthetic fertilizer with black soldier fly larvae (BSFL) frass as a one-time application (½ fert frass) and only BSFL frass as a one-time application (Frass). Different letters indicate significant differences (p < 0.05).
Mineral composition
-
Among the macronutrients, potassium and magnesium were both significantly lower in the control as compared to the ½ fert frass treatment (Table 1). Moreover, magnesium was significantly lower in the control than the frass treatment. Among the micronutrients, iron was significantly higher in the control than the other frass treatments. On the other hand, manganese, sodium, and zinc were significantly higher in the frass treatment compared to the control (Table 1).
Table 1. Mean (± SE) mineral composition (mg/g) of kale when receiving weekly applications of a synthetic fertilizer (control), diluted synthetic fertilizer with black soldier fly larvae (BSFL) frass as a one-time application (½ fert frass) and only BSFL frass as a one-time application (frass).
Control ½ fert frass Frass Macronutrients Phosphorus 1.26 ± 0.28a 1.50 ± 0.17a 1.71 ± 0.07a Calcium 4.02 ± 0.05a 4.24 ± 0.27a 3.91 ± 0.26a Potassium 16.19 ± 1.76b 35.67 ± 4.00a 30.37 ± 5.19ab Magnesium 2.75 ± 0.10b 3.52 ± 0.26a 3.68 ± 0.11a Micronutrients Iron 0.36 ± 0.03a 0.10 ± 0.01b 0.15 ± 0.07b Manganese 0.07 ± 0.00b 0.05 ± 0.00b 0.09 ± 0.01a Sodium 1.32 ± 0.04b 1.40 ± 0.01a 1.44 ± 0.01a Zinc 0.05 ± 0.01b 0.11 ± 0.02b 0.39 ± 0.06a Different superscripted letters in the same row indicate significant differences (p < 0.05). Moisture, chlorophyll and monosaccharide content
-
There was no significant difference in moisture content among the treatments (Table 2). Chlorophyll was significantly higher in the ½ fert frass treatment compared to the frass treatment (Table 2). Among the tested monosaccharides, only mannose was significantly affected by the treatment, which was lower in the control compared to those grown with only BSFL frass (Table 2).
Table 2. Mean (± SE) moisture (%), chlorophyll (mg/g), and monosaccharide composition (g/100 g) of kale when receiving weekly applications of a synthetic fertilizer (control), diluted synthetic fertilizer with black soldier fly larvae (BSFL) frass as a one-time application (½ fert frass) and only BSFL frass as a one-time application (frass).
Control ½ fert frass Frass Moisture (%) 80.77 ± 1.40 85.59 ± 0.53 84.12 ± 1.80 Chlorophyll 1.31 ± 0.20ab 1.62 ± 0.07a 1.02 ± 0.02b Monosaccharides Xylose 0.35 ± 0.08 0.46 ± 0.08 0.38 ± 0.05 Arabinose 0.56 ± 0.05 0.57 ± 0.02 0.51 ± 0.03 Fucose 0.16 ± 0.03 0.15 ± 0.01 0.14 ± 0.01 Mannose 0.19 ± 0.01b 0.26 ± 0.02ab 0.27 ± 0.02a Glucose 5.90 ± 0.55 3.87 ± 0.31 5.07 ± 0.84 Galactose 0.76 ± 0.02 0.81 ± 0.02 0.83 ± 0.03 Total 7.92 ± 0.54 6.12 ± 0.02 7.20 ± 0.03 Different superscripted letters in the same row indicate significant differences (p < 0.05). -
The results of this study demonstrated that not only could BSFL frass partially replace the tested synthetic fertilizer, but such a replacement actually led to significantly better production compared to either the sole use of either the synthetic fertilizer or BSFL frass. This could indicate an additive or synergistic effect between the synthetic fertilizer and BSFL frass or the fact that the ½ fert frass treatment received a double dose at the beginning of the study. Similarly, a combination of inorganic and organic fertilizers (in the form of animal manure) led to better plant production, compared to the sole use of either fertilizer type[15−18]. Such findings were often suggested to be from, at least in part, to better soil qualities, particularly soil organic matter[15−18]. Moreover, several recent studies have demonstrated that chitin-rich BSFL exuviae, which is present in BSFL frass, can enhance plant health and/or production by encouraging the abundance and duration of beneficial bacteria in the soil[23−25]. More research is required to better characterize this relationship to optimize production as well as improve sustainable farming practices.
Another interesting finding was that the sole use of BSFL frass as a one-time top dressing led to kale outperforming those receiving weekly applications of a synthetic fertilizer. This finding was not anticipated based on our previous findings on basil and jalapeno plants in which a one-time application of BSFL frass eventually led to inferior growth (unpublished results). In those studies, however, a 16-fold lower dose of BSFL frass was applied, compared to this study, and it was believed that a higher dose may be more effective. Therefore, in this study, the BSFL frass was applied at a 16-fold higher dose to test this hypothesis but also to determine if such high levels would harm the plants, such as causing burning of the leaves. Indeed, Setti et al.[9] found that BSFL frass applications can become excessive (from 30% up to 40%) to basil, tomatoes and baby lettuce, based on reduced growth. Setti et al.[9] suggested that BSFL frass applications can eventually become excessive by causing phytotoxicity to the plants. In this study, a total of 8.8 g of heat-treated and hammer milled BSFL frass was added to approximately 1.2 kg of soil, which was less than 1% to the overall weight of the substrate, and substantially less than those of Setti et al.[9]. It seems possible that the superior growth of kale in the ½ fert frass treatment, compared to the other treatments, was due to minimizing the chances of causing phytotoxicity as well as causing nutrient(s) deficiency.
In order to potentially provide additional insight regarding nutrient limitations as well as nutritional value to humans, plant tissue analysis for minerals was performed at the end of this study. In this study, all the tested macronutrients were either similar among treatments or significantly higher in the BSFL frass treatments. Potassium was significantly higher in the ½ fert frass treatment compared to the control while magnesium was significantly higher in the ½ fert frass and BSFL frass treatments compared with the control. This indicates that although the macronutrients within BSFL frass were likely slower releasing than synthetic forms, the frass was provided in sufficient amounts for kale growth. Moreover, among the tested micronutrients, these were all significantly higher in kale leaves when grown only with BSFL frass with the exception of iron. Chlorophyll synthesis in plants is mediated by iron[26], but the relationship between iron in kale leaves and the chlorophyll content was not evident in this study.
Monosaccharides have many functions in plants that include their roles in plant growth, structure as well as influences on taste and health for human consumers[27]. Among the tested monosaccharides, only mannose was significantly altered by the fertilizer treatment, which was higher in the BSFL frass treatment. The cause for this is unclear and could be worthwhile to explore further considering evidence showing various benefits to human health including having anti-inflammatory and anti-tumor properties[28].
An advantage to farming BSFL is their ability to thrive on various waste streams and thus can become an integral part of a circular economy. In this study, it was shown that the initial substrate provided to the BSFL, which was a mixture of locally available organic waste, was subsequently valorized as beneficial organic fertilizer. It has been shown that while the carbon and nitrogen content of BSFL frass is relatively stable, phosphorus, potassium and various micronutrients can vary substantially based on the provided substrate[5]. Therefore, the type of provided substrate may influence their efficacy as an organic fertilizer while another potential factor may include whether or not the frass was raw or processed, such as by drying and/or being ground up. Further research into these areas could be worthwhile towards optimizing the composition and processing methods of BSFL frass for different plant species.
-
About this article
Cite this article
Romano N, Datta SN, Sinha AK, Pande GSJ. 2023. Partially replacing synthetic fertilizer with black soldier fly (Hermetia illucens) larvae frass enhances kale (Brassica oleracea var. sabellica) production. Technology in Horticulture 3:8 doi: 10.48130/TIH-2023-0008
Partially replacing synthetic fertilizer with black soldier fly (Hermetia illucens) larvae frass enhances kale (Brassica oleracea var. sabellica) production
- Received: 22 February 2023
- Accepted: 23 April 2023
- Published online: 30 May 2023
Abstract: A by-product of insect farming is 'frass', which is the leftover excrement that can be high in essential minerals. The frass of black soldier fly (Hermetia illucens) larvae (BSFL) is increasingly gaining interest as a soil amendment, but information is limited regarding the feasibility of partially replacing synthetic fertilizers. In this 5-week study, newly-sprouted kale plants were grown with weekly applications of a synthetic fertilizer (control), diluted synthetic fertilizer combined with BSFL frass as a one-time application (½ fert frass) and only BSFL frass as a one-time application (frass). Results showed that the ½ fert frass treatment led to significantly higher biomass of kale than the other treatments, while the stem diameter and height was significantly higher than the control. Potassium and magnesium in kale leaves were significantly lower in the control compared the ½ fert frass treatment while manganese, sodium and zinc were significantly higher in the frass treatment than the control. Iron was significantly highest in the control than the other treatments, but chlorophyll was significantly higher in the ½ fert frass treatment compared to the frass treatment. Among the monosaccharides, mannose was significantly elevated in the leaves of kale grown with only frass. Results indicate that not only can BSFL frass partially replace synthetic fertilizer, but actually showed a growth benefit compared to the sole use of either synthetic fertilizer or BSFL frass.
-
Key words:
- Insect frass /
- Monosaccharides /
- Organic fertilizer /
- Sustainable farming