[1]

Dong N, Li C, Chen L, Zhao Y, Zhuang Q, et al. 2020. Establishment and application of ornamental evaluation system for Oxalis. Chinese Journal of Tropical Crops 41:1770−78

[2]

Groom QJ, Van der Straeten J, Hoste I. 2019. The origin of Oxalis corniculata L. PeerJ 7:e6384

doi: 10.7717/peerj.6384
[3]

Jakhar V, Sharma D. 2020. A sustainable approach for graphene-oxide surface decoration using Oxalis corniculata leaf extract-derived silver nanoparticles: their antibacterial activities and electrochemical sensing. Dalton Transactions 49:8625−35

doi: 10.1039/D0DT01747G
[4]

Fonseca DA, Ferreira M, Campos MG, Antunes PE, Antunes MJ, et al. 2020. Vascular effects of a polyphenolic fraction from Oxalis pes-caprae L.: Role of α-adrenergic receptors Sub-types. Natural Product Research 34:3369−72

doi: 10.1080/14786419.2018.1564291
[5]

Pissard A, Arbizu C, Ghislain M, Faux AM, Paulet S, et al. 2008. Congruence between morphological and molecular markers inferred from the analysis of the intra-morphotype genetic diversity and the spatial structure of Oxalis tuberosa Mol. Genetica 132:71−85

doi: 10.1007/s10709-007-9150-9
[6]

Lubna, Asaf S, Jan R, Khan AL, Lee IJ. 2020. Complete chloroplast genome characterization of Oxalis Corniculata and its comparison with related species from family Oxalidaceae. Plants 9:928

doi: 10.3390/plants9080928
[7]

Jooste M, Midgley GF, Oberlander KC, Dreyer LL. 2019. Oxalis seeds from the Cape Flora have a spectrum of germination strategies. American Journal of Botany 106:879−93

doi: 10.1002/ajb2.1300
[8]

Li S, Zhang Y, Liu J. 2020. Seed ejection mechanism in an Oxalis species. Scientific Reports 10:8855

doi: 10.1038/s41598-020-65885-2
[9]

Qiu K, Zhang J, Song T. 2021. In vitro culture and rapid propagation of Oxalis obtusa. Journal of Beijing University of Agriculture 36(1):72−78

[10]

Zhu F, Cui R. 2019. Comparison of molecular structure of oca (Oxalis tuberosa), potato, and maize starches. Food Chemistry 296:116−22

doi: 10.1016/j.foodchem.2019.05.192
[11]

Malice M, Bizoux JP, Blas R, Baudoin JP. 2010. Genetic diversity of Andean tuber crop species in the in situ microcenter of Huanuco, Peru. Crop Science 50:1915−23

doi: 10.2135/cropsci2009.09.0476
[12]

Moran N. 2015. Rhythmic leaf movements: physiological and molecular aspects. In Rhythms in plants: dynamic responses in a dynamic environment, eds. Mancuso S, Shabala S. Berlin, Heidelberg: Springer. pp. 57−95. https://doi.org/10.1007/978-3-540-68071-0_1

[13]

Zhao L, Wang Y, Xue Q, Zhao M. 2020. Research progress of plant nyctinasty and its mechanism. Chinese Wild Plant Resources 39:49−54

[14]

Minorsky PV. 2019. The functions of foliar nyctinasty: a review and hypothesis. Biological Reviews 94:216−29

doi: 10.1111/brv.12444
[15]

Ishimaru Y, Hamamoto S, Uozumi N, Ueda M. 2012. Regulatory mechanism of plant nyctinastic movement: an ion channel-related plant behavior. In Plant Electrophysiology: Signaling and Responses, ed. Volkov A. Berlin, Heidelberg: Springer. pp. 125−42. https://doi.org/10.1007/978-3-642-29110-4_5

[16]

Shim JS, Kubota A, Imaizumi T. 2017. Circadian clock and photoperiodic flowering in Arabidopsis: CONSTANS is a hub for signal integration. Plant Physiology 173:5−15

doi: 10.1104/pp.16.01327
[17]

Yuan X, Wang Z, Jia X, Sang L, Li J, et al. 2020. Research advances on molecular mechanisms of photoperiod-regulation plant flowering and CCT gene family. Acta Agriculturae Zhejiangensis 32:1133−40

[18]

Shi Y, Guo S, Dong S, Wen Y, Jin W. 2020. Research advances in circadian rhythm regulation genes CCA1/LHY in Arabidopsis. Molecular Plant Breeding 18(21):7080−87

doi: 10.13271/j.mpb.018.007080
[19]

Chen K, Zhang L, Peng Y, Guo Y, Zhao Z, et al. 2021. Related research progress on circadian clock regulating plant growth and metabolism process. Plant Physiology Journal 57:313−22

doi: 10.13592/j.cnki.ppj.2020.0432
[20]

Liu CC, Welham CV, Zhang XQ, Wang RQ. 2007. Leaflet movement of Robinia pseudoacacia in response to a changing light environment. Journal of Integrative Plant Biology 49:419−24

doi: 10.1111/j.1744-7909.2007.00392.x
[21]

Kang JH, Chon YS, Choi KO, Yun JG. 2009. Leaf Movement Regulated by Light Condition in Oxalis triangularis. Horticulture Environment and Biotechnology 50:371−75

[22]

Tanaka O, Murakami H, Wada H, Tanaka Y, Naka Y. 1989. Flower opening and closing of Oxalis martiana. The Botanical Magazine 102:245−53

doi: 10.1007/BF02488567
[23]

Lagercrantz U, Billhardt A, Rousku SN, Ljung K, Eklund DM. 2020. Nyctinastic thallus movement in the liverwort Marchantia polymorpha is regulated by a circadian clock. Scientific Reports 10:8658

doi: 10.1038/s41598-020-65372-8
[24]

Harshberger JW. 1922. Ecologic and morphologic study of the clovers (Trifolium). Proceedings of the American Philosophical Society 61:136−50

[25]

Moysset L, Llambrich E, Simón E. 2019. Calcium changes in Robinia pseudoacacia pulvinar motor cells during nyctinastic closure mediated by phytochromes. Protoplasma 256:615−29

doi: 10.1007/s00709-018-1323-0
[26]

Shao H. 2019. Research on the Leaf Pulvinus Motion and Basic Mechanical Model under the Influence of Light Intensity. Thesis. Nanjing University of Aeronautics and Astronautics, Nanjing, China. pp. 22−35.

[27]

Gadeceau E. 1926. Le sommeil des plantes La nyctinastie dans le genre Oxalis. Bulletin de la Société Botanique de France 73:682−87

doi: 10.1080/00378941.1926.10833626
[28]

Hoshizaki T, Hamner KC. 1969. Computer analysis of the leaf movements of pinto beans. Plant Physiology 44:1045−50

doi: 10.1104/pp.44.7.1045
[29]

Marler TE. 2019. Diurnal Serianthes nelsonii Merr. leaflet paraheliotropism reduces leaflet temperature, relieves photoinhibition, and alters nyctinastic behavior. Journal of Threatened Taxa 11:14112−18

doi: 10.11609/jott.4958.11.9.14112-14118
[30]

Darwin C. 2009. The Power of Movement in Plants (Cambridge Library Collection - Darwin, Evolution and Genetics). Cambridge: Cambridge University Press. pp. 113−48. https://manybooks.net/book/122852/read#epubcfi(/6/8[html17]!/4/2[calibre_pb_1]/1:0)