[1]

Xia E, Tong W, Hou Y, An Y, Chen L, et al. 2020. The reference genome of tea plant and resequencing of 81 diverse accessions provide insights into its genome evolution and adaptation. Molecular Plant 13:1013−26

doi: 10.1016/j.molp.2020.04.010
[2]

Liu Z, Han Y, Zhou Y, Wang T, Lian S, et al. 2021. Transcriptomic analysis of tea plant (Camellia sinensis) revealed the co-expression network of 4111 paralogous genes and biosynthesis of quality-related key metabolites under multiple stresses. Genomics 113:908−18

doi: 10.1016/j.ygeno.2020.10.023
[3]

Wang YC, Hao XY, Wang L, Xiao B, Wang XC, et al. 2016. Diverse Colletotrichum species cause anthracnose of tea plants (Camellia sinensis (L.) O. Kuntze) in China. Scientific Reports 6:35287

doi: 10.1038/srep35287
[4]

Lu Q, Wang Y, Li N, Ni D, Yang Y, et al. 2018. Differences in the characteristics and pathogenicity of Colletotrichum camelliae and C. fructicola isolated from the tea plant [Camellia sinensis (L.) O. Kuntze]. Frontiers in Microbiology 9:3060

doi: 10.3389/fmicb.2018.03060
[5]

Medina-Puche L, Tan H, Dogra V, Wu M, Rosas-Diaz T, et al. 2020. A defense pathway linking plasma membrane and chloroplasts and co-opted by pathogens. Cell 182:1109−1124.E25

doi: 10.1016/j.cell.2020.07.020
[6]

Bigeard J, Colcombet J, Hirt H. 2015. Signaling mechanisms in pattern-triggered immunity (PTI). Molecular Plant 8:521−39

doi: 10.1016/j.molp.2014.12.022
[7]

Chang M, Chen H, Liu F, Fu ZQ. 2022. PTI and ETI: convergent pathways with diverse elicitors. Trends in Plant Science 27:113−15

doi: 10.1016/j.tplants.2021.11.013
[8]

Zhang Q, Wang Y, Wei H, Fan W, Xu C, et al. 2021. CCR-NB-LRR proteins MdRNL2 and MdRNL6 interact physically to confer broad-spectrum fungal resistance in apple (Malus × domestica). The Plant Journal 108:1522−38

doi: 10.1111/tpj.15526
[9]

Wang X, Chen Q, Huang J, Meng X, Cui N, et al. 2021. Nucleotide-binding leucine-rich repeat genes CsRSF1 and CsRSF2 are positive modulators in the Cucumis sativus defense response to Sphaerotheca fuliginea. International Journal of Molecular Sciences 22:3986

doi: 10.3390/ijms22083986
[10]

Wang H, Zou S, Li Y, Lin F, Tang D. 2020. An ankyrin-repeat and WRKY-domain-containing immune receptor confers stripe rust resistance in wheat. Nature Communications 11:1353

doi: 10.1038/s41467-020-15139-6
[11]

Césari S, Kanzaki H, Fujiwara T, Bernoux M, Chalvon V, et al. 2014. The NB-LRR proteins RGA4 and RGA5 interact functionally and physically to confer disease resistance. The EMBO Journal 33:1941−59

doi: 10.15252/embj.201487923
[12]

Cesari S, Thilliez G, Ribot C, Chalvon V, Michel C, et al. 2013. The rice resistance protein pair RGA4/RGA5 recognizes the Magnaporthe oryzae effectors AVR-Pia and AVR1-CO39 by direct binding. The Plant Cell 25:1463−81

doi: 10.1105/tpc.112.107201
[13]

Yang H, Wang H, Jiang J, Liu M, Liu Z, et al. 2022. The Sm gene conferring resistance to gray leaf spot disease encodes an NBS-LRR (nucleotide-binding site-leucine-rich repeat) plant resistance protein in tomato. Theoretical and Applied Genetics 135:1467−76

doi: 10.1007/s00122-022-04047-6
[14]

Brueggeman R, Druka A, Nirmala J, Cavileer T, Drader T, et al. 2008. The stem rust resistance gene Rpg5 encodes a protein with nucleotide-binding-site, leucine-rich, and protein kinase domains. PNAS 105:14970−75

doi: 10.1073/pnas.0807270105
[15]

Zou S, Tang Y, Xu Y, Ji J, Lu Y, et al. 2022. TuRLK, a leucine-rich repeat receptor-like kinase, is indispensable for stripe rust resistance of YrU1 and confers broad resistance to multiple pathogens. BMC Plant Biology 22:280

doi: 10.1186/s12870-022-03679-6
[16]

Wang W, Chen L, Fengler K, Bolar J, Llaca V, et al. 2021. A giant NLR gene confers broad-spectrum resistance to Phytophthora sojae in soybean. Nature Communications 12:6263

doi: 10.1038/s41467-021-26554-8
[17]

Du D, Zhang C, Xing Y, Lu X, Cai L, et al. 2021. The CC-NB-LRR OsRLR1 mediates rice disease resistance through interaction with OsWRKY19. Plant Biotechnology Journal 19:1052−64

doi: 10.1111/pbi.13530
[18]

Wang Y, Lu Q, Xiong F, Hao X, Wang L, et al. 2020. Genome-wide identification, characterization, and expression analysis of nucleotide-binding leucine-rich repeats gene family under environmental stresses in tea (Camellia sinensis). Genomics 112:1351−62

doi: 10.1016/j.ygeno.2019.08.004
[19]

Lu Q, Wang Y, Xiong F, Hao X, Zhang X, et al. 2020. Integrated transcriptomic and metabolomic analyses reveal the effects of callose deposition and multihormone signal transduction pathways on the tea plant-Colletotrichum camelliae interaction. Scientific Reports 10:12858

doi: 10.1038/s41598-020-69729-x
[20]

Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, et al. 2020. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Molecular Plant 13:1194−202

doi: 10.1016/j.molp.2020.06.009
[21]

Hao X, Horvath DP, Chao WS, Yang Y, Wang X, et al. 2014. Identification and evaluation of reliable reference genes for quantitative real-time PCR analysis in tea plant (Camellia sinensis (L.) O. Kuntze). International Journal of Molecular Sciences 15:22155−72

doi: 10.3390/ijms151222155
[22]

Li H, Guo L, Yan M, Hu J, Lin Q, et al. 2022. A rapid and efficient transient expression system for gene function and subcellular localization studies in the tea plant (Camellia sinensis) leaves. Scientia Horticulture 297:110927

doi: 10.1016/j.scienta.2022.110927
[23]

Cao Q, Lv W, Jiang H, Chen X, Wang X, et al. 2022. Genome-wide identification of glutathione S-transferase gene family members in tea plant (Camellia sinensis) and their response to environmental stress. International Journal of Biological Macromolecules 205:749−60

doi: 10.1016/j.ijbiomac.2022.03.109
[24]

Zhang R, Ma Y, HuX, Chen Y, He X, et al. 2020. TeaCoN: A database of gene co-expression network for tea plant (Camellia sinensis). BMC Genomics 21:461

doi: 10.1186/s12864-020-06839-w
[25]

Xiao K, Zhu H, Zhu X, Liu Z, Wang Y, et al. 2021. Overexpression of PsoRPM3, an NBS-LRR gene isolated from myrobalan plum, confers resistance to Meloidogyne incognita in tobacco. Plant Molecular Biology 107:129−46

doi: 10.1007/s11103-021-01185-1
[26]

Lv L, Liu Y, Bai S, Turakulov KS, Dong C, et al. 2022. A TIR-NBS-LRR gene MdTNL1 regulates resistance to Glomerella leaf spot in apple. International Journal of Molecular Sciences 23:6323

doi: 10.3390/ijms23116323
[27]

Jin Y, Liu H, Gu T, Xing L, Han G, et al. 2022. PM2b, a CC-NBS-LRR protein, interacts with TaWRKY76-D to regulate powdery mildew resistance in common wheat. Frontiers in Plant Science 13:973065

doi: 10.3389/fpls.2022.973065
[28]

Dubey N, Chaudhary A, Singh K. 2022. Genome-wide analysis of TIR-NBS-LRR gene family in potato identified StTNLC7G2 inducing reactive oxygen species in presence of Alternaria solani. Frontiers in Genetics 12:791055

doi: 10.3389/fgene.2021.791055
[29]

Boyes DC, Nam J, Dangl JL. 1998. The Arabidopsis thaliana RPM1 disease resistance gene product is a peripheral plasma membrane protein that is degraded coincident with the hypersensitive response. PNAS 95:15849−54

doi: 10.1073/pnas.95.26.15849
[30]

Dangl JL, Ritter C, Gibbon MJ, Mur LA, Wood JR, et al. 1992. Functional homologs of the Arabidopsis RPM1 disease resistance gene in bean and pea. The Plant Cell 4:1359−69

doi: 10.1105/tpc.4.11.1359
[31]

Chen NWG, Sévignac M, Thareau V, Magdelenat G, David P, et al. 2010. Specific resistances against Pseudomonas syringae effectors AvrB and AvrRpm1 have evolved differently in common bean (Phaseolus vulgaris), soybean (Glycine max), and Arabidopsis thaliana. New Phytologist 187:941−56

doi: 10.1111/j.1469-8137.2010.03337.x
[32]

Nie YB, Ji WQ. 2019. Cloning and characterization of disease resistance protein RPM1 genes against powdery mildew in wheat line N9134. Cereal Research Communications 47:473−83

doi: 10.1556/0806.47.2019.27
[33]

Li F, Zhu X, Qiao F, Chen XF, Li H, et al. 2013. psoRPM1 gene from Prunus sogdiana indicated resistance to root-knot nematode in tobacco. Acta Horticulturae Sinica 40:2497−504

[34]

Belkhadir Y, Nimchuk Z, Hubert DA, Mackey D, Dangl JL. 2004. Arabidopsis RIN4 negatively regulates disease resistance mediated by RPS2 and RPM1 downstream or independent of the NDR1 signal modulator and is not required for the virulence functions of bacterial type III effectors AvrRpt2 or AvrRpm1. The Plant Cell 16:2822−35

doi: 10.1105/tpc.104.024117
[35]

Al-Daoude A, de Torres Zabala M, Ko JH, Grant M. 2005. RIN13 is a positive regulator of the plant disease resistance protein RPM1. The Plant Cell 17:1016−28

doi: 10.1105/tpc.104.028720
[36]

Wang W, Gao T, Chen J, Yang J, Huang H, et al. 2019. The late embryogenesis abundant gene family in tea plant (Camellia sinensis): Genome-wide characterization and expression analysis in response to cold and dehydration stress. Plant Physiology and Biochemistry 135:277−86

doi: 10.1016/j.plaphy.2018.12.009
[37]

Jin X, Cao D, Wang Z, Ma L, Tian K, et al. 2019. Genome-wide identification and expression analyses of the LEA protein gene family in tea plant reveal their involvement in seed development and abiotic stress responses. Scientific Reports 9:14123

doi: 10.1038/s41598-019-50645-8
[38]

Muoki RC, Paul A, Kumar S. 2012. A shared response of thaumatin like protein, chitinase, and late embryogenesis abundant protein 3 to environmental stresses in tea [Camellia sinensis (L.) O. Kuntze]. Functional & Integrative Genomics 12:565−71

doi: 10.1007/s10142-012-0279-y
[39]

Paul A, Singh S, Sharma S, Kumar S. 2014. A stress-responsive late embryogenesis abundant protein 7 (CsLEA7) of tea [Camellia sinensis (L.) O. Kuntze] encodes for a chaperone that imparts tolerance to Escherichia coli against stresses. Molecular Biology Reports 41:7191−200

doi: 10.1007/s11033-014-3602-y
[40]

Koubaa S, Brini F. 2020. Functional analysis of a wheat group 3 late embryogenesis abundant protein (TdLEA3) in Arabidopsis thaliana under abiotic and biotic stresses. Plant Physiology and Biochemistry 156:396−406

doi: 10.1016/j.plaphy.2020.09.028
[41]

Komori H, Higuchi Y. 2015. Structural insights into the O2 reduction mechanism of multicopper oxidase. The Journal of Biochemistry 158:293−98

doi: 10.1093/jb/mvv079
[42]

Li B, He S, Zheng Y, Wang Y, Lang X, et al. 2022. Genome-wide identification and expression analysis of the calmodulin-binding transcription activator (CAMTA) family genes in tea plant. BMC Genomics 23:667

doi: 10.1186/s12864-022-08894-x
[43]

Guo J, Chen J, Yang J, Yu Y, Yang Y, et al. 2018. Identification, characterization and expression analysis of the VQ motif-containing gene family in tea plant (Camellia sinensis). BMC Genomics 19:710

doi: 10.1186/s12864-018-5107-x
[44]

Ruan J, Zhou Y, Zhou M, Yan J, Khurshid M, et al. 2019. Jasmonic acid signaling pathway in plants. International Journal of Molecular Sciences 20:2479

doi: 10.3390/ijms20102479
[45]

Ding L-N, Li Y-T, Wu Y-Z, Li T, Geng R, et al. 2022. Plant disease resistance-related signaling pathways: recent progress and future prospects. International Journal of Molecular Sciences 23:16200

doi: 10.3390/ijms232416200
[46]

Qiu J, Xie J, Chen Y, Shen Z, Shi H, et al. 2022. Warm temperature compromises JA-regulated basal resistance to enhance Magnaporthe oryzae infection in rice. Molecular Plant 15:723−39

doi: 10.1016/j.molp.2022.02.014
[47]

Zhao Y, Huang J, Wang Z, Jing S, Wang Y, et al. 2016. Allelic diversity in an NLR gene BPH9 enables rice to combat planthopper variation. PNAS 113:12850−55

doi: 10.1073/pnas.1614862113
[48]

Chen J, Zhao Y, Luo X, Hong H, Yang T, et al. 2023. NLR surveillance of pathogen interference with hormone receptors induces immunity. Nature 613:145−52

doi: 10.1038/s41586-022-05529-9