[1]
|
Xia E, Tong W, Hou Y, An Y, Chen L, et al. 2020. The reference genome of tea plant and resequencing of 81 diverse accessions provide insights into its genome evolution and adaptation. Molecular Plant 13:1013−26 doi: 10.1016/j.molp.2020.04.010
CrossRef Google Scholar
|
[2]
|
Liu Z, Han Y, Zhou Y, Wang T, Lian S, et al. 2021. Transcriptomic analysis of tea plant (Camellia sinensis) revealed the co-expression network of 4111 paralogous genes and biosynthesis of quality-related key metabolites under multiple stresses. Genomics 113:908−18 doi: 10.1016/j.ygeno.2020.10.023
CrossRef Google Scholar
|
[3]
|
Wang YC, Hao XY, Wang L, Xiao B, Wang XC, et al. 2016. Diverse Colletotrichum species cause anthracnose of tea plants (Camellia sinensis (L.) O. Kuntze) in China. Scientific Reports 6:35287 doi: 10.1038/srep35287
CrossRef Google Scholar
|
[4]
|
Lu Q, Wang Y, Li N, Ni D, Yang Y, et al. 2018. Differences in the characteristics and pathogenicity of Colletotrichum camelliae and C. fructicola isolated from the tea plant [Camellia sinensis (L.) O. Kuntze]. Frontiers in Microbiology 9:3060 doi: 10.3389/fmicb.2018.03060
CrossRef Google Scholar
|
[5]
|
Medina-Puche L, Tan H, Dogra V, Wu M, Rosas-Diaz T, et al. 2020. A defense pathway linking plasma membrane and chloroplasts and co-opted by pathogens. Cell 182:1109−1124.E25 doi: 10.1016/j.cell.2020.07.020
CrossRef Google Scholar
|
[6]
|
Bigeard J, Colcombet J, Hirt H. 2015. Signaling mechanisms in pattern-triggered immunity (PTI). Molecular Plant 8:521−39 doi: 10.1016/j.molp.2014.12.022
CrossRef Google Scholar
|
[7]
|
Chang M, Chen H, Liu F, Fu ZQ. 2022. PTI and ETI: convergent pathways with diverse elicitors. Trends in Plant Science 27:113−15 doi: 10.1016/j.tplants.2021.11.013
CrossRef Google Scholar
|
[8]
|
Zhang Q, Wang Y, Wei H, Fan W, Xu C, et al. 2021. CCR-NB-LRR proteins MdRNL2 and MdRNL6 interact physically to confer broad-spectrum fungal resistance in apple (Malus × domestica). The Plant Journal 108:1522−38 doi: 10.1111/tpj.15526
CrossRef Google Scholar
|
[9]
|
Wang X, Chen Q, Huang J, Meng X, Cui N, et al. 2021. Nucleotide-binding leucine-rich repeat genes CsRSF1 and CsRSF2 are positive modulators in the Cucumis sativus defense response to Sphaerotheca fuliginea. International Journal of Molecular Sciences 22:3986 doi: 10.3390/ijms22083986
CrossRef Google Scholar
|
[10]
|
Wang H, Zou S, Li Y, Lin F, Tang D. 2020. An ankyrin-repeat and WRKY-domain-containing immune receptor confers stripe rust resistance in wheat. Nature Communications 11:1353 doi: 10.1038/s41467-020-15139-6
CrossRef Google Scholar
|
[11]
|
Césari S, Kanzaki H, Fujiwara T, Bernoux M, Chalvon V, et al. 2014. The NB-LRR proteins RGA4 and RGA5 interact functionally and physically to confer disease resistance. The EMBO Journal 33:1941−59 doi: 10.15252/embj.201487923
CrossRef Google Scholar
|
[12]
|
Cesari S, Thilliez G, Ribot C, Chalvon V, Michel C, et al. 2013. The rice resistance protein pair RGA4/RGA5 recognizes the Magnaporthe oryzae effectors AVR-Pia and AVR1-CO39 by direct binding. The Plant Cell 25:1463−81 doi: 10.1105/tpc.112.107201
CrossRef Google Scholar
|
[13]
|
Yang H, Wang H, Jiang J, Liu M, Liu Z, et al. 2022. The Sm gene conferring resistance to gray leaf spot disease encodes an NBS-LRR (nucleotide-binding site-leucine-rich repeat) plant resistance protein in tomato. Theoretical and Applied Genetics 135:1467−76 doi: 10.1007/s00122-022-04047-6
CrossRef Google Scholar
|
[14]
|
Brueggeman R, Druka A, Nirmala J, Cavileer T, Drader T, et al. 2008. The stem rust resistance gene Rpg5 encodes a protein with nucleotide-binding-site, leucine-rich, and protein kinase domains. PNAS 105:14970−75 doi: 10.1073/pnas.0807270105
CrossRef Google Scholar
|
[15]
|
Zou S, Tang Y, Xu Y, Ji J, Lu Y, et al. 2022. TuRLK, a leucine-rich repeat receptor-like kinase, is indispensable for stripe rust resistance of YrU1 and confers broad resistance to multiple pathogens. BMC Plant Biology 22:280 doi: 10.1186/s12870-022-03679-6
CrossRef Google Scholar
|
[16]
|
Wang W, Chen L, Fengler K, Bolar J, Llaca V, et al. 2021. A giant NLR gene confers broad-spectrum resistance to Phytophthora sojae in soybean. Nature Communications 12:6263 doi: 10.1038/s41467-021-26554-8
CrossRef Google Scholar
|
[17]
|
Du D, Zhang C, Xing Y, Lu X, Cai L, et al. 2021. The CC-NB-LRR OsRLR1 mediates rice disease resistance through interaction with OsWRKY19. Plant Biotechnology Journal 19:1052−64 doi: 10.1111/pbi.13530
CrossRef Google Scholar
|
[18]
|
Wang Y, Lu Q, Xiong F, Hao X, Wang L, et al. 2020. Genome-wide identification, characterization, and expression analysis of nucleotide-binding leucine-rich repeats gene family under environmental stresses in tea (Camellia sinensis). Genomics 112:1351−62 doi: 10.1016/j.ygeno.2019.08.004
CrossRef Google Scholar
|
[19]
|
Lu Q, Wang Y, Xiong F, Hao X, Zhang X, et al. 2020. Integrated transcriptomic and metabolomic analyses reveal the effects of callose deposition and multihormone signal transduction pathways on the tea plant-Colletotrichum camelliae interaction. Scientific Reports 10:12858 doi: 10.1038/s41598-020-69729-x
CrossRef Google Scholar
|
[20]
|
Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, et al. 2020. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Molecular Plant 13:1194−202 doi: 10.1016/j.molp.2020.06.009
CrossRef Google Scholar
|
[21]
|
Hao X, Horvath DP, Chao WS, Yang Y, Wang X, et al. 2014. Identification and evaluation of reliable reference genes for quantitative real-time PCR analysis in tea plant (Camellia sinensis (L.) O. Kuntze). International Journal of Molecular Sciences 15:22155−72 doi: 10.3390/ijms151222155
CrossRef Google Scholar
|
[22]
|
Li H, Guo L, Yan M, Hu J, Lin Q, et al. 2022. A rapid and efficient transient expression system for gene function and subcellular localization studies in the tea plant (Camellia sinensis) leaves. Scientia Horticulture 297:110927 doi: 10.1016/j.scienta.2022.110927
CrossRef Google Scholar
|
[23]
|
Cao Q, Lv W, Jiang H, Chen X, Wang X, et al. 2022. Genome-wide identification of glutathione S-transferase gene family members in tea plant (Camellia sinensis) and their response to environmental stress. International Journal of Biological Macromolecules 205:749−60 doi: 10.1016/j.ijbiomac.2022.03.109
CrossRef Google Scholar
|
[24]
|
Zhang R, Ma Y, HuX, Chen Y, He X, et al. 2020. TeaCoN: A database of gene co-expression network for tea plant (Camellia sinensis). BMC Genomics 21:461 doi: 10.1186/s12864-020-06839-w
CrossRef Google Scholar
|
[25]
|
Xiao K, Zhu H, Zhu X, Liu Z, Wang Y, et al. 2021. Overexpression of PsoRPM3, an NBS-LRR gene isolated from myrobalan plum, confers resistance to Meloidogyne incognita in tobacco. Plant Molecular Biology 107:129−46 doi: 10.1007/s11103-021-01185-1
CrossRef Google Scholar
|
[26]
|
Lv L, Liu Y, Bai S, Turakulov KS, Dong C, et al. 2022. A TIR-NBS-LRR gene MdTNL1 regulates resistance to Glomerella leaf spot in apple. International Journal of Molecular Sciences 23:6323 doi: 10.3390/ijms23116323
CrossRef Google Scholar
|
[27]
|
Jin Y, Liu H, Gu T, Xing L, Han G, et al. 2022. PM2b, a CC-NBS-LRR protein, interacts with TaWRKY76-D to regulate powdery mildew resistance in common wheat. Frontiers in Plant Science 13:973065 doi: 10.3389/fpls.2022.973065
CrossRef Google Scholar
|
[28]
|
Dubey N, Chaudhary A, Singh K. 2022. Genome-wide analysis of TIR-NBS-LRR gene family in potato identified StTNLC7G2 inducing reactive oxygen species in presence of Alternaria solani. Frontiers in Genetics 12:791055 doi: 10.3389/fgene.2021.791055
CrossRef Google Scholar
|
[29]
|
Boyes DC, Nam J, Dangl JL. 1998. The Arabidopsis thaliana RPM1 disease resistance gene product is a peripheral plasma membrane protein that is degraded coincident with the hypersensitive response. PNAS 95:15849−54 doi: 10.1073/pnas.95.26.15849
CrossRef Google Scholar
|
[30]
|
Dangl JL, Ritter C, Gibbon MJ, Mur LA, Wood JR, et al. 1992. Functional homologs of the Arabidopsis RPM1 disease resistance gene in bean and pea. The Plant Cell 4:1359−69 doi: 10.1105/tpc.4.11.1359
CrossRef Google Scholar
|
[31]
|
Chen NWG, Sévignac M, Thareau V, Magdelenat G, David P, et al. 2010. Specific resistances against Pseudomonas syringae effectors AvrB and AvrRpm1 have evolved differently in common bean (Phaseolus vulgaris), soybean (Glycine max), and Arabidopsis thaliana. New Phytologist 187:941−56 doi: 10.1111/j.1469-8137.2010.03337.x
CrossRef Google Scholar
|
[32]
|
Nie YB, Ji WQ. 2019. Cloning and characterization of disease resistance protein RPM1 genes against powdery mildew in wheat line N9134. Cereal Research Communications 47:473−83 doi: 10.1556/0806.47.2019.27
CrossRef Google Scholar
|
[33]
|
Li F, Zhu X, Qiao F, Chen XF, Li H, et al. 2013. psoRPM1 gene from Prunus sogdiana indicated resistance to root-knot nematode in tobacco. Acta Horticulturae Sinica 40:2497−504
Google Scholar
|
[34]
|
Belkhadir Y, Nimchuk Z, Hubert DA, Mackey D, Dangl JL. 2004. Arabidopsis RIN4 negatively regulates disease resistance mediated by RPS2 and RPM1 downstream or independent of the NDR1 signal modulator and is not required for the virulence functions of bacterial type III effectors AvrRpt2 or AvrRpm1. The Plant Cell 16:2822−35 doi: 10.1105/tpc.104.024117
CrossRef Google Scholar
|
[35]
|
Al-Daoude A, de Torres Zabala M, Ko JH, Grant M. 2005. RIN13 is a positive regulator of the plant disease resistance protein RPM1. The Plant Cell 17:1016−28 doi: 10.1105/tpc.104.028720
CrossRef Google Scholar
|
[36]
|
Wang W, Gao T, Chen J, Yang J, Huang H, et al. 2019. The late embryogenesis abundant gene family in tea plant (Camellia sinensis): Genome-wide characterization and expression analysis in response to cold and dehydration stress. Plant Physiology and Biochemistry 135:277−86 doi: 10.1016/j.plaphy.2018.12.009
CrossRef Google Scholar
|
[37]
|
Jin X, Cao D, Wang Z, Ma L, Tian K, et al. 2019. Genome-wide identification and expression analyses of the LEA protein gene family in tea plant reveal their involvement in seed development and abiotic stress responses. Scientific Reports 9:14123 doi: 10.1038/s41598-019-50645-8
CrossRef Google Scholar
|
[38]
|
Muoki RC, Paul A, Kumar S. 2012. A shared response of thaumatin like protein, chitinase, and late embryogenesis abundant protein 3 to environmental stresses in tea [Camellia sinensis (L.) O. Kuntze]. Functional & Integrative Genomics 12:565−71 doi: 10.1007/s10142-012-0279-y
CrossRef Google Scholar
|
[39]
|
Paul A, Singh S, Sharma S, Kumar S. 2014. A stress-responsive late embryogenesis abundant protein 7 (CsLEA7) of tea [Camellia sinensis (L.) O. Kuntze] encodes for a chaperone that imparts tolerance to Escherichia coli against stresses. Molecular Biology Reports 41:7191−200 doi: 10.1007/s11033-014-3602-y
CrossRef Google Scholar
|
[40]
|
Koubaa S, Brini F. 2020. Functional analysis of a wheat group 3 late embryogenesis abundant protein (TdLEA3) in Arabidopsis thaliana under abiotic and biotic stresses. Plant Physiology and Biochemistry 156:396−406 doi: 10.1016/j.plaphy.2020.09.028
CrossRef Google Scholar
|
[41]
|
Komori H, Higuchi Y. 2015. Structural insights into the O2 reduction mechanism of multicopper oxidase. The Journal of Biochemistry 158:293−98 doi: 10.1093/jb/mvv079
CrossRef Google Scholar
|
[42]
|
Li B, He S, Zheng Y, Wang Y, Lang X, et al. 2022. Genome-wide identification and expression analysis of the calmodulin-binding transcription activator (CAMTA) family genes in tea plant. BMC Genomics 23:667 doi: 10.1186/s12864-022-08894-x
CrossRef Google Scholar
|
[43]
|
Guo J, Chen J, Yang J, Yu Y, Yang Y, et al. 2018. Identification, characterization and expression analysis of the VQ motif-containing gene family in tea plant (Camellia sinensis). BMC Genomics 19:710 doi: 10.1186/s12864-018-5107-x
CrossRef Google Scholar
|
[44]
|
Ruan J, Zhou Y, Zhou M, Yan J, Khurshid M, et al. 2019. Jasmonic acid signaling pathway in plants. International Journal of Molecular Sciences 20:2479 doi: 10.3390/ijms20102479
CrossRef Google Scholar
|
[45]
|
Ding L-N, Li Y-T, Wu Y-Z, Li T, Geng R, et al. 2022. Plant disease resistance-related signaling pathways: recent progress and future prospects. International Journal of Molecular Sciences 23:16200 doi: 10.3390/ijms232416200
CrossRef Google Scholar
|
[46]
|
Qiu J, Xie J, Chen Y, Shen Z, Shi H, et al. 2022. Warm temperature compromises JA-regulated basal resistance to enhance Magnaporthe oryzae infection in rice. Molecular Plant 15:723−39 doi: 10.1016/j.molp.2022.02.014
CrossRef Google Scholar
|
[47]
|
Zhao Y, Huang J, Wang Z, Jing S, Wang Y, et al. 2016. Allelic diversity in an NLR gene BPH9 enables rice to combat planthopper variation. PNAS 113:12850−55 doi: 10.1073/pnas.1614862113
CrossRef Google Scholar
|
[48]
|
Chen J, Zhao Y, Luo X, Hong H, Yang T, et al. 2023. NLR surveillance of pathogen interference with hormone receptors induces immunity. Nature 613:145−52 doi: 10.1038/s41586-022-05529-9
CrossRef Google Scholar
|