[1]

Kearney PM, Whelton M, Reynolds K, Muntner P, Whelton PK, et al. 2005. Global burden of hypertension: analysis of worldwide data. The Lancet 365(9455):217−223

doi: 10.1016/S0140-6736(05)17741-1
[2]

awes CM, Vander Hoorn S, Rodgers A. 2008. Global burden of blood-pressure-related disease, 2001. The Lancet 371:1513−18

doi: 10.1016/s0140-6736(08)60655-8
[3]

Lopez-Sendon J, Swedberg K, McMurray J, Tamargo J, Maggioni AP, et al. 2004. Expert consensus document on angiotensin converting enzyme inhibitors in cardiovascular disease: the task force on ACE-inhibitors of the European society of cardiology. European Heart Journal 25:1454−1470

doi: 10.1016/j.ehj.2004.06.003
[4]

Scacchi R, Ruggeri M, Corbo RM. 2011. Variation of the butyrylcholinesterase (BChE) and acetylcholinesterase (AChE) genes in coronary artery disease. Clinica Chimica Acta 412:1341−44

doi: 10.1016/j.cca.2011.03.033
[5]

Kim OY, Lee SM, Chung JH, Do HJ, Moon J, et al. 2012. Arginase I and the very low-density lipoprotein receptor are associated with phenotypic biomarkers for obesity. Nutrition 28:635−39

doi: 10.1016/j.nut.2011.09.012
[6]

Blake GJ, Rifai N, Buring J, Ridker PM. 2003. Blood pressure, C-reactive protein, and risk of future cardiovascular events. Circulation 108:2993−99

doi: 10.1161/01.CIR.0000104566.10178.AF
[7]

Crowley SD. 2014. The cooperative roles of inflammation and oxidative stress in the pathogenesis of hypertension. Antioxidants & Redox Signaling 20:102−20

doi: 10.1089/ars.2013.5258
[8]

Chrissobolis S, Faraci FM. 2010. Differences in protection against angiotensin II-induced endothelial dysfunction by manganese superoxide dismutase in the cerebral circulation. Hypertension 55:905−10

doi: 10.1161/HYPERTENSIONAHA.109.147041
[9]

Higashi Y, Maruhashi T, Noma K, Kihara Y. 2014. Oxidative stress and endothelial dysfunction: clinical evidence and therapeutic implications. Trends in Cardiovascular Medicine 24:165−69

doi: 10.1016/j.tcm.2013.12.001
[10]

Gebreyohannes EA, Bhagavathula AS, Abebe TB, Tefera YG, Abegaz TM. 2019. Adverse effects and non-adherence to antihypertensive medications in University of Gondar Comprehensive Specialized Hospital. Clinical Hypertension 25:1

doi: 10.1186/s40885-018-0104-6
[11]

Obi RK 2011. Antiviral Potential of Vegetables: Can They be Cost-Effective Agents for Human Disease? In Nutrients, Dietary Supplements, and Nutriceuticals. Nutrition and Health, eds. Gerald J, Watson R, Preedy V. USA: Humana Press. pp. 259–76. https://doi.org/10.1007/978-1-60761-308-4_16

[12]

Akubugwo IE, Obasi NA, Chinyere GC, Ugbogu AE. 2008. Mineral and phytochemical contents in leaves of Amaranthus hybridus L. and Solanum nigrum L. subjected to different processing methods. Journal of Biochemistry Research 2:40−44

[13]

Dansi A, Adjatin A, Adoukonou-Sagbadja H, Faladé V, Yedomonhan H, et al. 2008. Traditional leafy vegetables and their use in the Benin Republic. Genetic Resources and Crop Evolution 55:1239−56

doi: 10.1007/s10722-008-9324-z
[14]

Odunlade TV, Famuwagun AA, Taiwo KA, Gbadamosi SO, Oyedele DJ, et al. 2017. Chemical composition and quality characteristics of wheat bread supplemented with leafy vegetable powders. Journal of Food Quality 2017:9536716

doi: 10.1155/2017/9536716
[15]

Ikpeazu VO, Emmanuel O, Ekweogu CN, Akara EU, Ugbogu EA. 2019. A comparative nutritional assessments of leaf extracts of Ocimum gratissimum and Solanum aethiopicum. American Journal of Biomedical Research 7:27−31

[16]

Ololade ZS, Kuyooro SE, Ogunmola OO, Abiona OO. 2017. Phytochemical, antioxidant, anti-arthritic, anti-inflammatory and bactericidal potentials of the leaf extract of Lactuca teraxacifolia. Global Journal of Medical Research 17:19−28

[17]

Oyebamiji KJ, Ayeni LS. 2018. Proximate composition of African eggplant (Solanum macrocarpon) obtained from soil amended with cattle dung and poultry manure. FUW Trends in Science & Technology Journal 3(2B):981−84

[18]

Kaushik D, Jogpal I, Kaushik P, Lal S, Saneja A, et al. 2009. Evaluation of activities of Solanum nigrum fruit extract. Archives of Applied Science Research 1:43−50

[19]

Ogunsuyi OB, Omage FB., Olagoke OC, Oboh G, Rocha JBT. 2022. Phytochemicals from African eggplants (Solanum macrocarpon L) and Black nightshade (Solanum nigrum L.) leaves as acetylcholinesterase inhibitors: an in-silico study. Journal of Biomolecular Structure & Dynamics 0:1−10

doi: 10.1080/07391102.2022.2124194
[20]

Oboh G, Ekperigin MM, Kazeem MI. 2005. Nutritional and haemolytic properties of eggplants (Solanum macrocarpon) leaves. Journal of Food Composition and Analysis 18:153−60

doi: 10.1016/j.jfca.2003.12.013
[21]

Cushman DW, Cheung HS. 1971. Spectrophotometric assay and properties of the Angiotensin I- converting enzyme of rabbit lung. Biochemical Pharmacology 20:1637−48

doi: 10.1016/0006-2952(71)90292-9
[22]

Kaysen GA, Strecker HJ. 1973. Increased arginase activity levels caused by nitric oxide synthase dysfunction. New England Journal of Medicine 323:1234−38

[23]

Ellman GL, Courtney KD, Andres V Jr, Featherstone RM. 1961. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology 7:91−95

doi: 10.1016/0006-2952(61)90145-9
[24]

Miranda KM, Espey MG, Wink DA. 2001. A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide 5:62−71

doi: 10.1006/niox.2000.0319
[25]

Ellman GL. 1959. Tissue sulfhydryl groups. Archives of Biochemistry and Biophysics 82:70−77

doi: 10.1016/0003-9861(59)90090-6
[26]

Ohkawa H, Ohishi N, Yagi K. 1979. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry 95:351−58

doi: 10.1016/0003-2697(79)90738-3
[27]

Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72:248−54

doi: 10.1006/abio.1976.9999
[28]

Sung JH, Jo YS, Kim SJ, Ryu JS, Kim MC, et al. 2013. Effect of Lutein on L-NAME-Induced Hypertensive Rats. The Korean Journal of Physiology & Pharmacology 17(4):339−45

doi: 10.4196/kjpp.2013.17.4.339
[29]

El nezhawy AOH, Maghrabi IA, Mohamed KM, Omar HA. 2014. Cymbopogon proximus Extract decreases L-NAME-induced hypertension in rats. International Journal of Pharmaceutical Sciences Review and Research 27:66

[30]

Omobowale TO, Oyagbemi A, Ugbor F, Adejumobi O, Adedapo A, et al. 2018. Nω-Nitro-L-Arginine Methyl Ester (L-NAME) induced hypertension and cardiorenal oxidative stress: Modulatory effect of the methanolic extract of Azadirachta indica. The FASEB Journal 31(1):1011.10

doi: 10.1096/fasebj.31.1_supplement.1011.10
[31]

Agunloye OM, Oboh G, Bello GT, Oyagbemi AA. 2020. Caffeic and chlorogenic acids modulate altered activity of key enzymes linked to hypertension incyclosporine-induced hypertensive rats. Journal of Basic and Clinical Physiology and Pharmacology 32:169−77

doi: 10.1515/jbcpp-2019-0360
[32]

Agunloye OM, Oboh G, Ademiluyi AO, Ademosun AO, Akindahunsi AA, et al. 2019. Cardio-protective and antioxidant properties of caffeic acid and chlorogenic acid: Mechanistic role of angiotensin converting enzyme, cholinesterase and arginase activities in cyclosporine induced hypertensive rats. Biomedicine & Pharmacotherapy 109:450−58

doi: 10.1016/j.biopha.2018.10.044
[33]

Toba H, Nakagawa Y, Miki S, Shimizu T, Yoshimura A, et al. 2005. Calcium channel blockades exhibit anti-inflammatory and antioxidative effects by augmentation of endothelial nitric oxide synthase and the inhibition of angiotensin converting enzyme in the NG-Nitro-ʟ-arginine methyl ester-induced hypertensive rat aorta: Vasoprotective effects beyond the blood pressure-lowering effects of amlodipine and manidipine. Hypertension Research 28:689−700

doi: 10.1291/hypres.28.689
[34]

Guerrero L, Castillo J, Quiñones M, Garcia-Vallvé S, Arola L, et al. 2012. Inhibition of angiotensin-converting enzyme activity by flavonoids: Structure-activity relationship studies. PLoS One 7(11):e49493

doi: 10.1371/journal.pone.0049493
[35]

Agunloye OM, Oboh G. 2018. Caffeic acid and chlorogenic acid: Evaluation of antioxidant effect and inhibition of key enzymes linked with hypertension. Journal of Food Biochemistry 42(4):e12541

doi: 10.1111/jfbc.12541
[36]

Al Shukor N, Van Camp J, Gonzales GB, Staljanssens D, Struijs K, et al. 2013. Angiotensin-converting enzyme inhibitory effects by plant phenolic compounds: a study of structure activity relationships. Journal of Agricultural and Food Chemistry 61:11832−39

doi: 10.1021/jf404641v
[37]

Alashi AM, Blanchard CL, Mailer RJ, Agboola SO, Mawson AJ, et al. 2014. Blood pressure lowering effects of Australian canola protein hydrolysates in spontaneously hypertensive rats. Food Research International 55:281−87

doi: 10.1016/j.foodres.2013.11.015
[38]

Oboh G, Ademiluyi AO, Agunloye OM, Ademosun AO, Ogunsakin BG. 2019. Inhibitory effect of garlic, purple onion, and white onion on key enzymes linked with type 2 diabetes and hypertension. Journal of Dietary Supplements 16:105−18

doi: 10.1080/19390211.2018.1438553
[39]

Oboh G, Akinyemi AJ, Adeleye B, Oyeleye SI, Ogunsuyi OB, et al. 2016. Polyphenolic compositions and in vitro angiotensin-I-converting enzyme inhibitory properties of common green leafy vegetables: A comparative study. Food Science and Biotechnology 25(5):1243−49

doi: 10.1007/s10068-016-0197-1
[40]

Bernátová I, Kopincová J, Púzserová A, Janega P, Babál P. 2007. Chronic low-dose L-NAME treatment increases nitric oxide production and vasorelaxation in normotensive rats. Physiological Research 56:S17−S24

doi: 10.33549/physiolres.931393
[41]

Agunloye OM, Oboh G. 2018. Effect of different processing methods on antihypertensive property and antioxidant activity of sandpaper leaf (Ficus exaperata) extracts. Journal of Dietary Supplements 15:871−83

doi: 10.1080/19390211.2017.1406423
[42]

Adinortey MB, Ansah C, Weremfo A, Adinortey CA, Adukpo GE, et al. 2018. DNA damage protecting activity and antioxidant potential of Launaea taraxacifolia leaves extract. Journal of Natural Science Biology and Medicine 9(1):6−13

[43]

Kumar S, Prahalathan P, Raja B. 2012. Syringic acid ameliorates ʟ-NAME-induced hypertension by reducing oxidative stress. Naunyn-Schmiedeberg's Archives of Pharmacology 385:1175−84

doi: 10.1007/s00210-012-0802-7
[44]

Kellogg DL Jr, Liu Y, Kosiba IF, O'Donnell D. 1999. Role of nitric oxide in the vascular effects of local warming of the skin in humans. Journal of Applied Physiology 86(4):1185−90

doi: 10.1152/jappl.1999.86.4.1185
[45]

Oboh G, Agunloye OM, Akinyemi AJ, Ademiluyi AO, Adefegha SA. 2013. Comparative study on the inhibitory effect of caffeic and chlorogenic acids on key enzymes linked to alzheimer's disease and some pro-oxidant induced oxidative stress in rats' brain—In vitro. Neurochemical Research 38:413−19

doi: 10.1007/s11064-012-0935-6
[46]

Ogunsuyi, OB, Ademiluyi AO, Oboh G, Oyeleye SI, Dada AF. 2018. Green leafy vegetables from two Solanum spp. (Solanum nigrum L. and Solanum macrocarpon L.) ameliorate scopolamine-induced cognitive and neurochemical impairments in rats. Food Science and Nutrition 6(4):860−70

doi: 10.1002/fsn3.628
[47]

Fasakin CF, Udenigwe CC, Aluko RE. 2011. Antioxidant properties of chlorophyll enriched and chlorophyll-depleted polyphenolic fractions from leaves of Vernonia amygdalina and Gongronema latifolium. Food Research International 44(8):2435−41

doi: 10.1016/j.foodres.2010.12.019