[1]

Zhou Y, Lambrides CJ, Fukai S. 2014. Drought resistance and soil water extraction of a perennial C4 grass: contributions of root and rhizome traits. Functional Plant Biology 41:505−19

doi: 10.1071/FP13249
[2]

Dodd MB, McGowan AW, Power IL, Thorrold BS. 2005. Effects of variation in shade level, shade duration and light quality on perennial pastures. New Zealand Journal of Agricultural Research 48:531−43

doi: 10.1080/00288233.2005.9513686
[3]

Huang S, Jiang S, Liang J, Chen M, Shi Y. 2019. Current knowledge of bermudagrass responses to abiotic stresses. Breeding Science 69:215−26

doi: 10.1270/jsbbs.18164
[4]

Dunne JC, Reynolds WC, Miller GL, Arellano C, Brandenburg RL, et al. 2015. Identification of South African bermudagrass germplasm with shade tolerance. HortScience 50:1419−25

doi: 10.21273/HORTSCI.50.10.1419
[5]

Malik S, ur Rehman S, Younis A, Qasim M, Nadeem M, et al. 2014. Evaluation of quality, growth, and physiological potential of various turf grass cultivars for shade garden. Journal of Horticulture, Forestry and Biotechnology 18:110−21

[6]

Schmidt RE, Blaser RE. 1969. Effect of temperature, light, and nitrogen on growth and metabolism of ‘Tifgreen’ bermudagrass (Cynodon spp. ). Crop Science 9:5−9

doi: 10.2135/cropsci1969.0011183X000900010002x
[7]

Trenholm LE, Nagata RT. 2005. Shade tolerance of St. Augustinegrass cultivars. HortTechnology 15:267−72

doi: 10.21273/HORTTECH.15.2.0267
[8]

Liu W, Ren M, Liu T, Du Y, Zhou T, et al. 2018. Effect of shade stress on lignin biosynthesis in soybean stems. Journal of Integrative Agriculture 17:1594−604

doi: 10.1016/S2095-3119(17)61807-0
[9]

Li W, Katin-Grazzini L, Gu X, Wang X, El-Tanbouly R, et al. 2017. Transcriptome analysis reveals differential gene expression and a possible role of gibberellins in a shade-tolerant mutant of perennial ryegrass. Frontiers in Plant Science 8:868

doi: 10.3389/fpls.2017.00868
[10]

Tan T, Li S, Fan Y, Wang Z, Ali Raza M, et al. 2022. Far-red light: a regulator of plant morphology and photosynthetic capacity. The Crop Journal 10:300−09

doi: 10.1016/j.cj.2021.06.007
[11]

Falcioni R, Moriwaki T, Perez-Llorca M, Munné-Bosch S, Gibin MS, et al. 2020. Cell wall structure and composition is affected by light quality in tomato seedlings. Journal of Photochemistry and Photobiology B: Biology 203:111745

doi: 10.1016/j.jphotobiol.2019.111745
[12]

Dunne JC, Miller GL, Arellano C, Brandenburg RL, Schoeman A, et al. 2017. Shade response of bermudagrass accessions under different management practices. Urban Forestry & Urban Greening 26:169−77

doi: 10.1016/j.ufug.2017.02.011
[13]

Shi T, Quan Q, Li Y. 2018. Effects of clonal integration on the proximal and distal ramets of Cynodon dactylon under shade stress. Brazilian Archives of Biology and Technology 61:e18160475

doi: 10.1590/1678-4324-2018160475
[14]

Trappe JM, Karcher DE, Richardson MD, Patton AJ. 2011. Shade and traffic tolerance varies for bermudagrass and zoysiagrass cultivars. Crop Science 51:870−77

doi: 10.2135/cropsci2010.05.0248
[15]

Fan J, Zhang W, Amombo E, Hu L, Kjorven JO, et al. 2020. Mechanisms of environmental stress tolerance in turfgrass. Agronomy 10:522

doi: 10.3390/agronomy10040522
[16]

Chhetri M, Fontanier C, Koh K, Wu Y, Moss JQ. 2019. Turf performance of seeded and clonal bermudagrasses under varying light environments. Urban Forestry & Urban Greening 43:126355

doi: 10.1016/j.ufug.2019.05.017
[17]

Liu X, Renard CMGC, Bureau S, Le Bourvellec C. 2021. Revisiting the contribution of ATR-FTIR spectroscopy to characterise plant cell wall polysaccharides. Carbohydrate Polymers 262:117935

doi: 10.1016/j.carbpol.2021.117935
[18]

Kac̆uráková M, Capek P, Sasinková V, Wellner N, Ebringerová A. 2000. FT-IR study of plant cell wall model compounds: pectic polysaccharides and hemicelluloses. Carbohydrate Polymers 43:195−203

doi: 10.1016/S0144-8617(00)00151-X
[19]

Chazal R, Robert P, Durand S, Devaux MF, Saulnier L, et al. 2014. Investigating lignin key features in maize lignocelluloses using infrared spectroscopy. Applied Spectroscopy 68:1342−47

doi: 10.1366/14-07472
[20]

Wang J, Zhu J, Huang R, Yang Y. 2012. Investigation of cell wall composition related to stem lodging resistance in wheat (Triticum aestivum L. ) by FTIR spectroscopy. Plant Signaling & Behavior 7:856−63

doi: 10.4161/psb.20468
[21]

Alonso-Simón A, García-Angulo P, Mélida H, Encina A, Álvarez JM, et al. 2011. The use of FTIR spectroscopy to monitor modifications in plant cell wall architecture caused by cellulose biosynthesis inhibitors. Plant Signaling & Behavior 6:1104−10

doi: 10.4161/psb.6.8.15793
[22]

Hori R, Sugiyama J. 2003. A combined FT-IR microscopy and principal component analysis on softwood cell walls. Carbohydrate Polymers 52:449−53

doi: 10.1016/S0144-8617(03)00013-4
[23]

Canteri MHG, Renard CMGC, Le Bourvellec C, Bureau S. 2019. ATR-FTIR spectroscopy to determine cell wall composition: application on a large diversity of fruits and vegetables. Carbohydrate Polymers 212:186−96

doi: 10.1016/j.carbpol.2019.02.021
[24]

Wolfrum E, Payne C, Stefaniak T, Rooney W, Dighe N, et al. 2013. Multivariate calibration models for sorghum composition using Near-Infrared (NIR) Spectroscopy. Technical Report. Rep. NREL/TP-5100-56838. National Renewable Energy Laboratory, USA

[25]

Payne CE, Wolfrum EJ. 2015. Rapid analysis of composition and reactivity in cellulosic biomass feedstocks with near-infrared spectroscopy. Biotechnology for Biofuels 8:43

doi: 10.1186/s13068-015-0222-2
[26]

Chen SF, Danao MGC, Singh V, Brown PJ. 2014. Determining sucrose and glucose levels in dual-purpose sorghum stalks by Fourier transform near infrared (FT-NIR) spectroscopy. Journal of the Science of Food and Agriculture 94:2569−76

doi: 10.1002/jsfa.6606
[27]

Brown C, Martin AP, Grof CPL. 2017. The application of Fourier transform mid-infrared (FTIR) spectroscopy to identify variation in cell wall composition of Setaria italica ecotypes. Journal of Integrative Agriculture 16:1256−67

doi: 10.1016/S2095-3119(16)61574-5
[28]

Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, et al. 2008. Determination of Structural Carbohydrates and Lignin in Biomass. Technical Report. Rep. NREL/TP-510-42618. National Renewable Energy Laboratory, USA.

[29]

De Mendiburu F, Yaseen M. 2020. Agricolae: Statistical procedures for agricultural research. R package version 1.4.0. Retrieved from: https://myaseen208.github.io/agricolae/, https://cran.r-project.org/package=agricolae.

[30]

Hoffmann L Jr, Rooney WL. 2014. Accumulation of biomass and compositional change over the growth season for six photoperiod sorghum lines. BioEnergy Research 7:811−15

doi: 10.1007/s12155-013-9405-5
[31]

Zhou G, Taylor G, Polle A. 2011. FTIR-ATR-based prediction and modelling of lignin and energy contents reveals independent intra-specific variation of these traits in bioenergy poplars. Plant Methods 7:9

doi: 10.1186/1746-4811-7-9
[32]

Semchenko M, Lepik M, Götzenberger L, Zobel K. 2012. Positive effect of shade on plant growth: amelioration of stress or active regulation of growth rate? Journal of Ecology 100:459−66

doi: 10.1111/j.1365-2745.2011.01936.x
[33]

Rehman M, Fahad S, Saleem MH, Hafeez M, Ur Rahman MH, et al. 2020. Red light optimized physiological traits and enhanced the growth of ramie (Boehmeria nivea L.). Photosynthetica 58:922−31

doi: 10.32615/ps.2020.040
[34]

Saleem MH, Rehman M, Fahad S, Tung SA, Iqbal N, et al. 2020. Leaf gas exchange, oxidative stress, and physiological attributes of rapeseed (Brassica napus L.) grown under different light-emitting diodes. Photosynthetica 58:836−45

doi: 10.32615/ps.2020.010
[35]

Fu J, Luo Y, Sun P, Gao J, Zhao D, et al. 2020. Effects of shade stress on turfgrasses morphophysiology and rhizosphere soil bacterial communities. BMC Plant Biology 20:92

doi: 10.1186/s12870-020-2300-2
[36]

Tegg RS, Lane PA. 2004. A comparison of the performance and growth of a range of turfgrass species under shade. Australian Journal of Experimental Agriculture 44:353−58

doi: 10.1071/EA02159
[37]

Magalhães Silva Moura JC, Bonine CAV, de Oliveira Fernandes Viana J, Dornelas MC, Mazzafera P. 2010. Abiotic and biotic stresses and changes in the lignin content and composition in plants. Journal of Integrative Plant Biology 52:360−76

doi: 10.1111/j.1744-7909.2010.00892.x
[38]

Hussain S, Iqbal N, Pang T, Naeem Khan M, Liu W, et al. 2019. Weak stem under shade reveals the lignin reduction behavior. Journal of Integrative Agriculture 18:496−505

doi: 10.1016/S2095-3119(18)62111-2
[39]

Wen B, Zhang Y, Hussain S, Wang S, Zhang X, et al. 2020. Slight shading stress at seedling stage does not reduce lignin biosynthesis or affect lodging resistance of soybean stems. Agronomy 10:544

doi: 10.3390/agronomy10040544
[40]

Kyriazopoulos AP, Abraham EM, Parissi ZM, Koukoura Z, Nastis AS. 2013. Forage production and nutritive value of Dactylis glomerata and Trifolium subterraneum mixtures under different shading treatments. Grass and Forage Science 68:72−82

doi: 10.1111/j.1365-2494.2012.00870.x
[41]

Lin CH, McGraw ML, George MF, Garrett HE. 2001. Nutritive quality and morphological development under partial shade of some forage species with agroforestry potential. Agroforestry Systems 53:269−81

doi: 10.1023/A:1013323409839
[42]

Hill J, Farrish K, Oswald B, Coble D, Shadow A. 2021. Potential of several native and introduced warm season grasses as components of silvopastures in the Southeastern United States. Agroforestry Systems 95:1735−44

doi: 10.1007/s10457-021-00678-8
[43]

Ballaré CL. 2014. Light regulation of plant defense. Annual Review of Plant Biology 65:335−63

doi: 10.1146/annurev-arplant-050213-040145
[44]

Xie M, Zhang J, Tschaplinski TJ, Tuskan GA, Chen JG, et al. 2018. Regulation of lignin biosynthesis and its role in growth-defense tradeoffs. Frontiers of Plant Science 9:1427

doi: 10.3389/fpls.2018.01427
[45]

Ranade SS, Seipel G, Gorzsás A, Garcia-Gil MR. 2022. Adaptive strategies of scots pine under shade: Increase in lignin synthesis and ecotypic variation in defense-related gene expression. Physiologia Plantarum 174:e13792

doi: 10.1111/ppl.13792
[46]

Ranade SS, Seipel G, Gorzsás A, García-Gil MR. 2022. Enhanced lignin synthesis and ecotypic variation in defense-related gene expression in response to shade in Norway spruce. Plant, Cell & Environment 45:2671−81

doi: 10.1111/pce.14387
[47]

Courbier S, Pierik R. 2019. Canopy light quality modulates stress responses in plants. iScience 22:441−52

doi: 10.1016/j.isci.2019.11.035
[48]

Ryalls JMW, Moore BD, Johnson SN. 2018. Silicon uptake by a pasture grass experiencing simulated grazing is greatest under elevated precipitation. BMC Ecology 18:53

doi: 10.1186/s12898-018-0208-6