[1]

Bae TW, Vanjildorj E, Song SY, Nishiguchi S, Yang SS, et al. 2008. Environmental risk assessment of genetically engineered herbicide-tolerant Zoysia japonica. Journal of Environmental Quality 37:207−18

doi: 10.2134/jeq2007.0128
[2]

Choi JS, Yang GM, Oh CJ, Bea EJ. 2012. Morphological characteristics and growth rate of medium-leaf type zoysiagrasses collected at major sod production area in S. Korea. Asian Journal of Turfgrass Science 26:1−7

[3]

Guo H, Xuan J, Liu J, Zhang, Y, Zheng, Y. 2012. Association of molecular markers with cold tolerance and green period in zoysiagrass (Zoysia Willd. ). Breeding Science 62:320−27

doi: 10.1270/jsbbs.62.320
[4]

Tanaka H, Tokunaga R, Muguerza M, Kitazaki Y, Hashiguchi M, et al. 2016. Genetic structure and speciation of zoysiagrass ecotypes collected in Japan. Crop Science 56:818−26

doi: 10.2135/cropsci2015.04.0249
[5]

Bae EJ, Han JJ, Choi SM, Lee KS, Park YB, et al. 2016. Seed yields and germination rates of native ecotype collections for the development of high-yield seeded variety of zoysiagrass in Korea. Weed & Turfgrass Science 5:95−100

doi: 10.5660/WTS.2016.5.2.95
[6]

Zhang J, Unruh JB, Kenworthy K, Erickson J, Christensen CT, et al. 2016. Phenotypic plasticity and turf performance of zoysiagrass in response to reduced light intensities. Crop Science 56:1337−48

doi: 10.2135/cropsci2015.09.0570
[7]

Kunwanlee P, Tanaka H, Inoue T, Hashiguchi M, Muguerza M, et al. 2018. Turf quality trait and genetic fingerprinting of a new zoysiagrass cultivar in Japan. Journal of Japanese Society of Turfgrass Science 47:15−24

doi: 10.11275/turfgrass.47.1_15
[8]

Gouveia BT, Rios EF, Nunes JAR, Gezan SA, Munoz PR, et al. 2021. Multispecies genotype × environment interaction for turfgrass quality in five turfgrass breeding programs in the southeastern United States. Crop Science 61:3080−96

doi: 10.1002/csc2.20421
[9]

Engelke MC, Colbaugh PF, Reinert JA, Marcum KB, White RH, et al. 2002. Registration of "Diamond" zoysiagrass. Crop Science 42:304−05

doi: 10.2135/cropsci2002.3040
[10]

Schwartz BM, Harris-Shultz KR, Contreras RN, Hans CS, Jackson SA. 2013. Creation of hexaploid and octaploid zoysiagrass using colchicine and breeding. Crop Science 53:2218−24

doi: 10.2135/cropsci2013.02.0124
[11]

Ebina M, Kobayashi M, Tonogi H, Tsuruta S, Akamine H, et al. 2017. Evaluation and breeding of zoysiagrass using Japan's natural genetic resources. International Turfgrass Society Research Journal 13:40−43

doi: 10.2134/itsrj2017.02.0104
[12]

Forbes I Jr. 1952. Chromosome numbers and hybrids in Zoysia. Agronomy Journal 44:194−99

doi: 10.2134/agronj1952.00021962004400040008x
[13]

Kimball JA, Zuleta MC, Kenworthy KE, Lehman VG, Harris-Shultz KR, et al. 2013. Genetic relationships in Zoysia species and the identification of putative interspecific hybrids using simple sequence repeat markers and inflorescence traits. Crop Science 53:285−95

doi: 10.2135/cropsci2012.04.0218
[14]

Cole CT. 2003. Genetic variation in rare and common plants. Annual Review of Ecology, Evolution, and Systematics 34:213−37

doi: 10.1146/annurev.ecolsys.34.030102.151717
[15]

Eagles HA, Bariana HS, Ogbonnaya FC, Rebetzke GJ, Hollamby GJ, et al. 2001. Implementation of markers in Australian wheat breeding. Australian Journal of Agricultural Research 52:1349−56

doi: 10.1071/AR01067
[16]

Kalia RK, Rai MK, Kalia S, Singh R, Dhawan AK. 2011. Microsatellite markers: an overview of the recent progress in plants. Euphytica 177:309−34

doi: 10.1007/s10681-010-0286-9
[17]

Li G, Quiros CF. 2001. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theoretical and Applied Genetics 103:455−61

doi: 10.1007/s001220100570
[18]

Uzun A, Yesiloglu T, Aka-Kacar Y, Tuzcu O, Gulsen O. 2009. Genetic diversity and relationships within Citrus and related genera based on sequence related amplified polymorphism markers (SRAPs). Scientia Horticulturae 121:306−12

doi: 10.1016/j.scienta.2009.02.018
[19]

Tan M, Ling Y, Peng Y, Li Z. 2022. Evaluation of genetic diversity and drought tolerance among thirty-three dichondra (Dichondra repens) genotypes. Grass Research 2:8

doi: 10.48130/GR-2022-0008
[20]

Li X, Qiao L, Chen B, Zheng Y, Zhi C, et al. 2022. SSR markers development and their application in genetic diversity evaluation of garlic (Allium sativum) germplasm. Plant Diversity 44:481−91

doi: 10.1016/j.pld.2021.08.001
[21]

Chen X, Wang H, Yang X, Jiang J, Ren G, et al. 2020. Small-scale alpine topography at low latitudes and high altitudes: refuge areas of the genus Chrysanthemum and its allies. Horticulture Research 7:184

doi: 10.1038/s41438-020-00407-9
[22]

Riangwong K, Wanchana S, Aesomnuk W, Saensuk C, Nubankoh P, et al. 2020. Mining and validation of novel genotyping-by-sequencing (GBS)-based simple sequence repeats (SSRs) and their application for the estimation of the genetic diversity and population structure of coconuts (Cocos nucifera L. ) in Thailand. Horticulture Research 7:156

doi: 10.1038/s41438-020-00374-1
[23]

Zhang J, Li H, Jiang Y, Li H, Zhang Z, et al. 2020. Natural variation of physiological traits, molecular markers, and chlorophyll catabolic genes associated with heat tolerance in perennial ryegrass accessions. BMC Plant Biology 20:520

doi: 10.1186/s12870-020-02695-8
[24]

Harris-Shultz KR, Milla-Lewis S, Patton AJ, Kenworthy K, Chandra A, et al. 2014. Detection of DNA and ploidy variation within vegetatively propagated zoysiagrass cultivars. Journal of the American Society for Horticultural Science 139:547−52

doi: 10.21273/JASHS.139.5.547
[25]

Guo H, Wang Y, Zhang B, Li D, Chen J, et al. 2019. Association of candidate genes with drought tolerance traits in zoysiagrass germplasm. Journal of Plant Physiology 237:61−71

doi: 10.1016/j.jplph.2019.04.008
[26]

Tanaka H, Hirakawa H, Kosugi S, Nakayama S, Ono A, et al. 2016. Sequencing and comparative analyses of the genomes of zoysiagrasses. DNA Research 23:171−80

doi: 10.1093/dnares/dsw006
[27]

Xue D, Guo H, Zheng Y, Chen X, Liu J. 2009. Hybrid identification of progenies of Zoysia crosses by SRAP marker. Acta Prataculturae Sinica 18:72−79

doi: 10.3321/j.issn:1004-5759.2009.01.011
[28]

Anderson S. 2000. Taxonomy of Zoysia (Poaceae): Morphological and Molecular Variation. Dissertation. Texas A&M University, U. S. Number of Pages 143-67.

[29]

Li M, Yuyama N, Hirata M, Wang Y, Han J, et al. 2010. An integrated SSR based linkage map for Zoysia matrella L. and Z. japonica Steud. Molecular Breeding 26:467−76

doi: 10.1007/s11032-009-9386-4
[30]

Li M, Yuyama N, Hirata M, Han J, Wang Y, et al. 2009. Construction of a high-density SSR marker-based linkage map of zoysiagrass (Zoysia japonica Steud.). Euphytica 170:327−38

doi: 10.1007/s10681-009-9990-8
[31]

Xie, Liu L, Fu J, Li H. 2012. Genetic diversity in Chinese natural zoysiagrass based on inter-simple sequence repeat (ISSR) analysis. African Journal of Biotechnology 11:7659−69

doi: 10.5897/AJB11.3743
[32]

Moore KA, Zuleta MC, Patton AJ, Schwartz BM, Aranaz G, et al. 2017. SSR allelic diversity shifts in zoysiagrass (Zoysia spp. ) cultivars released from 1910 to 2016. Crop Science 57:S-1−S-12

doi: 10.2135/cropsci2016.06.0452
[33]

Jiang B, Wang D, Zhou J, Cai J, Jiang J, et al. 2023. First report of corn ear rot caused by Fusarium asiaticum in China. Plant Disease 107:4

doi: 10.1094/PDIS-08-22-1934-PDN
[34]

Liu L, Guo W, Zhu X, Zhang T. 2003. Inheritance and fine mapping of fertility restoration for cytoplasmic male sterility in Gossypium hirsutum L. Theoretical and Applied Genetics 106:461−69

doi: 10.1007/s00122-002-1084-0
[35]

Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier M, et al. 1998. A microsatellite map of wheat. Genetics 149:2007−23

doi: 10.1093/genetics/149.4.2007
[36]

Tsuruta SI, Hashiguchi M, Ebina M, Matsuo T, Yamamoto T, et al. 2005. Development and characterization of simple sequence repeat markers in Zoysia japonica Steud. Grassland Science 51:249−57

doi: 10.1111/j.1744-697X.2005.00033.x
[37]

Bassam BJ, Caetano-Anollés G, Gresshoff PM. 1991. Fast and sensitive silver staining of DNA in polyacrylamide gels. Analytical Biochemistry 196:80−83

doi: 10.1016/0003-2697(91)90120-I
[38]

Liu L, Liu G, Gong Y, Dai W, Wang Y, et al. 2007. Evaluation of genetic purity of F1 hybrid seeds in cabbage with RAPD, ISSR, SRAP, and SSR markers. HortScience 42:724−27

doi: 10.21273/HORTSCI.42.3.724
[39]

Dice LR. 1945. Measures of the amount of ecologic association between species. Ecology 26:297−302

doi: 10.2307/1932409
[40]

Weng J, Fan M, Lin C, Liu Y, Huang S. 2007. Genetic variation of Zoysia as revealed by random amplified polymorphic DNA (RAPD) and isozyme pattern. Plant Production Science 10:80−85

doi: 10.1626/pps.10.80
[41]

Kimball JA, Zuleta MC, Kenworthy KE, Lehman VG, Milla-Lewis S. 2012. Assessment of genetic diversity in Zoysia species using amplified fragment length polymorphism markers. Crop Science 52:360−70

doi: 10.2135/cropsci2011.05.0252
[42]

Mosca E, Eckert AJ, Di Pierro EA, Rocchini D, La Porta N, et al. 2012. The geographical and environmental determinants of genetic diversity for four alpine conifers of the European Alps. Molecular Ecology 21:5530−45

doi: 10.1111/mec.12043
[43]

Harris-Shultz KR, Schwartz BM, Paterson AH, Brady JA. 2010. Identification and mapping of nucleotide binding site-leucine-rich repeat resistance gene analogs in bermudagrass. Journal of the American Society for Horticultural Science 135:74−82

doi: 10.21273/JASHS.135.1.74
[44]

Harris-Shultz KR, Raymer P, Scheffler BE, Arias RS. 2013. Development and characterization of seashore paspalum SSR markers. Crop Science 53:2679−85

doi: 10.2135/cropsci2012.11.0671
[45]

Hong Y, Pandey MK, Lu Q, Liu H, Gangurde SS, et al. 2021. Genetic diversity and distinctness based on morphological and SSR markers in peanut. Agronomy Journal, 113:4648−60

doi: 10.1002/agj2.20671
[46]

Liu Y, Guo H, Wang Y, Shi J, Li D, et al. 2019. Measurement of genetic diversity of Chinese seashore paspalum resources through morphological and sequence-related amplified polymorphism analysis. Journal of the American Society for Horticultural Science 144:379−86

doi: 10.21273/JASHS04700-19
[47]

Tian H, Wang F, Zhao J, Yi H, Wang L, et al. 2015. Development of maizeSNP3072, a high-throughput compatible SNP array, for DNA fingerprinting identification of Chinese maize varieties. Molecular Breeding 35:136

doi: 10.1007/s11032-015-0335-0
[48]

Liu L, Zhao L, Gong Y, Wang M, Chen L, et al. 2008. DNA fingerprinting and genetic diversity analysis of late-bolting radish cultivars with RAPD, ISSR and SRAP markers. Scientia Horticulturae 116:240−47

doi: 10.1016/j.scienta.2007.12.011
[49]

Liu J, Qu J, Hu K, Zhang L, Li J, et al. 2015. Development of genomewide simple sequence repeat fingerprints and highly polymorphic markers in cucumbers based on next-generation sequence data. Plant Breeding 134:605−11

doi: 10.1111/pbr.12304
[50]

Pradhan A, Yan G, Plummer JA. 2004. Development of DNA fingerprinting keys for the identification of radish cultivars. Australian Journal of Experimental Agriculture 44:95−102

doi: 10.1071/EA03031