[1]

Semwal DK, Badoni R, Semwal R, Kothiyal SK, Singh GJP, et al. 2010. The genus Stephania (Menispermaceae): chemical and pharmacological perspectives. Journal of Ethnopharmacology 132:369−83

doi: 10.1016/j.jep.2010.08.047
[2]

Rana MS, Islam MM, Bosunia SN, Mahmud SR, Santa SA, et al. 2014. A survey of medicinal plants used by a village folk medicinal practitioner in sreemangal upazila of maulvibazar district, bangladesh. American-Eurasian Journal of Sustainable Agriculture 8:1−9

[3]

Yang L, Liu S, Liu J, Zhang Z, Wan X, et al. 2020. COVID-19: immunopathogenesis and immunotherapeutics. Signal Transduction and Targeted Therapy 5:128

doi: https://doi.org/10.1038/s41392-020-00243-2
[4]

Fan HH, Wang LQ, Liu WL, An XP, Liu ZD, et al. 2020. Repurposing of clinically approved drugs for treatment of coronavirus disease 2019 in a 2019-novel coronavirus-related coronavirus model. Chinese Medical Journal 133:1051−56

doi: 10.1097/CM9.0000000000000797
[5]

Rogosnitzky M, Okediji P, Koman I. 2020. Cepharanthine: a review of the antiviral potential of a japanese-approved alopecia drug in COVID-19. Pharmacological Reports 72:1509−16

doi: 10.1007/s43440-020-00132-z
[6]

Gao S, Li X, Ding X, Qi W, Yang Q. 2017. Cepharanthine induces autophagy, apoptosis and cell cycle arrest in breast cancer cells. Cellular Physiology and Biochemistry 41:1633−48

doi: 10.1159/000471234
[7]

Bailly C. 2019. Cepharanthine: an update of its mode of action, pharmacological properties and medical applications. Phytomedicine 62:152956

doi: 10.1016/j.phymed.2019.152956
[8]

Minami H, Dubouzet E, Iwasa K, Sato F. 2007. Functional analysis of norcoclaurine synthase in Coptis japonica. The Journal of Biological Chemistry 282:6274−82

doi: 10.1074/jbc.M608933200
[9]

Li Q, Bu J, Ma Y, Yang J, Hu Z, et al. 2020. Characterization of O-methyltransferases involved in the biosynthesis of tetrandrine in Stephania tetrandra. Journal of Plant Physiology 250:153181

doi: 10.1016/j.jplph.2020.153181
[10]

Zhao W, Shen C, Zhu J, Ou C, Liu M, et al. 2020. Identification and characterization of methyltransferases involved in benzylisoquinoline alkaloids biosynthesis from Stephania intermedia. Biotechnology Letters 42:461−69

doi: 10.1007/s10529-019-02785-0
[11]

Godbole RC, Pable AA, Singh S, Barvkar VT. 2022. Interplay of transcription factors orchestrating the biosynthesis of plant alkaloids. 3 Biotech 12:250

doi: 10.1007/s13205-022-03316-x
[12]

Boke H, Ozhuner E, Turktas M, Parmaksiz I, Ozcan S, et al. 2015. Regulation of the alkaloid biosynthesis by miRNA in Opium poppy. Plant Biotechnology Journal 13:409−20

doi: 10.1111/pbi.12346
[13]

Todd AT, Liu E, Polvi SL, Pammett RT, Page JE. 2010. A functional genomics screen identifies diverse transcription factors that regulate alkaloid biosynthesis in Nicotiana benthamiana. The Plant Journal 62:589−600

doi: 10.1111/j.1365-313X.2010.04186.x
[14]

Yamada Y, Sato F. 2013. Transcription factors in alkaloid biosynthesis. In International review of cell and molecular biology, ed. Jeon KW. Vol 305. USA: Academic Press. pp. 339−82. https://doi.org/10.1016/B978-0-12-407695-2.00008-1

[15]

De Boer K, Tilleman S, Pauwels L, Vanden Bossche R, De Sutter V, et al. 2011. Apetala2/ethylene response factor and basic helix-loop-helix tobacco transcription factors cooperatively mediate jasmonate-elicited nicotine biosynthesis. The Plant Journal 66:1053−65

doi: 10.1111/j.1365-313X.2011.04566.x
[16]

Yamada Y, Nishida S, Shitan N, Sato, F. 2021. Genome-wide profiling of WRKY genes involved in benzylisoquinoline alkaloid biosynthesis in California poppy (Eschscholzia californica). Frontiers in Plant Science 12:699326

doi: 10.3389/fpls.2021.699326
[17]

Jeena GS, Singh N, Shikha RK. 2022. An insight into microRNA biogenesis and its regulatory role in plant secondary metabolism. Plant Cell Reports 41:1651−71

doi: 10.1007/s00299-022-02877-8
[18]

Pani A, Mahapatra RK. 2013. Computational identification of microRNAs and their targets in Catharanthus roseus expressed sequence tags. Genomics Data 1:2−6

doi: 10.1016/j.gdata.2013.06.001
[19]

Fu Y, Guo H, Cheng Z, Wang R, Li G, et al. 2013. NtNAC-R1, a novel nac transcription factor gene in tobacco roots, responds to mechanical damage of shoot meristem. Plant Physiology and Biochemistry 69:74−81

doi: 10.1016/j.plaphy.2013.05.004
[20]

Treiber TN, Treiber G, Meister. 2019. Regulation of microRNA biogenesis and its crosstalk with other cellular pathways. Nature reviews. Nature Reviews Molecular Cell Biology 20:5−20

doi: 10.1038/s41580-018-0059-1
[21]

Cui C, Wang JJ, Zhao JH, Fang YY, He XF, et al. 2020. A Brassica miRNA regulates plant growth and immunity through distinct modes of action. Molecular Plant 13:231−45

doi: 10.1016/j.molp.2019.11.010
[22]

Gao J, Chen H, Yang H, He Y, Tian Z, et al. 2018. A brassinosteroid responsive miRNA-target module regulates gibberellin biosynthesis and plant development. The New Phytologist 220:488−501

doi: 10.1111/nph.15331
[23]

Liao B, Shen X, Xiang L, Guo S, Chen S, et al. 2022. Allele-aware chromosome-level genome assembly of Artemisia annua reveals the correlation between ADS expansion and artemisinin yield. Molecular Plant 8:1310−28

doi: 10.1016/j.molp.2022.05.013
[24]

Abla M, Sun H, Li Z, Wei C, Gao F, et al. 2019. Identification of miRNAs and their response to cold stress in Astragalus membranaceus. Biomolecules 9:182

doi: 10.3390/biom9050182
[25]

Tirumalai V, Swetha C, Nair A, Pandit A, Shivaprasad PV. 2019. MiR828 and miR858 regulate VvMYB114 to promote anthocyanin and flavonol accumulation in grapes. Journal of Experimental Botany 70:4775−92

doi: 10.1093/jxb/erz264
[26]

Li H, Lin Q, Yan M, Wang M, Wang P, et al. 2021. Relationship between secondary metabolism and mirna for important flavor compounds in different tissues of tea plant (Camellia sinensis) as revealed by genome-wide miRNA analysis. Journal of Agricultural and Food Chemistry 69:2001−12

doi: 10.1021/acs.jafc.0c07440
[27]

Samad AFA, Rahnamaie-Tajadod R, Sajad M, Jani J, Murad AMA, et al. 2019. Regulation of terpenoid biosynthesis by miRNA in Persicaria minor induced by Fusarium oxysporum. BMC Genomics 20:586

doi: 10.1186/s12864-019-5954-0
[28]

Chen S, Li Z, Zhang S, Zhou Y, Xiao X, et al. 2022. Emerging biotechnology applications in natural product and synthetic pharmaceutical analyses. Acta Pharmaceutica Sinica B 11:4075−97

doi: 10.1016/j.apsb.2022.08.025
[29]

Gabisonia K, Prosdocimo G, Aquaro GD, Carlucci L, Zentilin L, et al. 2019. MicroRNA therapy stimulates uncontrolled cardiac repair after myocardial infarction in pigs. Nature 569:418−22

doi: 10.1038/s41586-019-1191-6
[30]

Rupaimoole R, Slack FJ. 2017. MicroRNA therapeutics: Towards a new era for the management of cancer and other diseases. Nature reviews. Drug Discovery 16:203−22

doi: 10.1038/nrd.2016.246
[31]

Owusu Adjei M, Zhou X, Mao M, Rafique F, Ma J. 2021. MicroRNAs roles in plants secondary metabolism. Plant Signaling & Behavior 16:1915590

doi: 10.1080/15592324.2021.1915590
[32]

Chorostecki U, Moro B, Rojas AML, Debernardi JM, Schapire AL, et al. 2017. Evolutionary footprints reveal insights into plant microRNA biogenesis. The Plant Cell 29:1248−61

doi: 10.1105/tpc.17.00272
[33]

Frazier TP, Xie F, Freistaedter A, Burklew CE, Zhang B. 2010. Identification and characterization of microRNAs and their target genes in tobacco (Nicotiana tabacum). Planta 232:1289−308

doi: 10.1007/s00425-010-1255-1
[34]

Kozomara A, Birgaoanu M, Griffiths-Jones S. 2019. MiRBase: from microRNA sequences to function. Nucleic acids research 47:D155−D162

doi: 10.1093/nar/gky1141
[35]

Guo Z, Kuang Z, Zhao Y, Deng Y, He H, et al. 2022. PmiREN2.0: from data annotation to functional exploration of plant microRNAs. Nucleic Acids Research 50:D1475−D1482

doi: 10.1093/nar/gkab811
[36]

Zhang Z, Yu J, Li D, Zhang Z, Liu F, et al. 2009. PMRD: plant microRNA database. Nucleic Acids Research 38:D806−D813

doi: 10.1093/nar/gkp818
[37]

Su X, Yang L, Wang D, Shu Z, Yang Y, et al. 2022. 1 K Medicinal Plant Genome Database: an integrated database combining genomes and metabolites of medicinal plants. Horticulture Research 9:uhac075

doi: 10.1093/hr/uhac075
[38]

Sun W, Xu Z, Song C, Chen S. 2022. Herbgenomics: decipher molecular genetics of medicinal plants. The Innovation 3(6):100322

doi: 10.1016/j.xinn.2022.100322
[39]

Miao C, Wang Z, Zhang L, Yao J, Hua K, et al. 2019. The grain yield modulator miR156 regulates seed dormancy through the gibberellin pathway in rice. Nature Communications 10:3822

doi: 10.1038/s41467-019-11830-5
[40]

Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nature Methods 9:357−59

doi: 10.1038/nmeth.1923
[41]

Zuker M. 2003. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Research 31:3406−15

doi: 10.1093/nar/gkg595
[42]

Markham NR, Zuker M. 2008. UNAFold: software for nucleic acid folding and hybridization. In Bioinformatics. Methods in Molecular Biology™, ed. Keith JM. Vol 453. Humana Press. pp. 3–31. https://doi.org/10.1007/978-1-60327-429-6_1

[43]

Paul S, de la Fuente-Jiménez JL, Manriquez CG, Sharma A. 2020. Identification, characterization and expression analysis of passion fruit (Passiflora edulis) microRNAs. 3 Biotech 10:25

doi: 10.1007/s13205-019-2000-5
[44]

Jin J, Tian F, Yang DC, Meng YQ, Kong L, et al. 2017. PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants. Nucleic Acids Research 45:D1040−D1045

doi: 10.1093/nar/gkw982
[45]

Fahlgren N, Carrington JC. 2010. miRNA target prediction in plants. In Plant MicroRNAs. Methods in Molecular Biology, ed. Meyers B, Green P. Vol 592. Totowa, NJ: Humana Press. pp. 51–57. https://doi.org/10.1007/978-1-60327-005-2_4

[46]

Abel Y, Rederstorff M. 2021, Stem-loop qRT-PCR-based quantification of miRNAs. In Small Non-Coding RNAs. Methods in Molecular Biology, ed. Rederstorff M. Vol 2300. New York: Humana. pp. 59-64. https://doi.org/10.1007/978-1-0716-1386-3_6

[47]

Patra B, Pattanaik S, Schluttenhofer C, Yuan L. 2018. A network of jasmonate-responsive bHLH factors modulate monoterpenoid indole alkaloid biosynthesis in Catharanthus roseus. The New Phytologist 217:1566−81

doi: 10.1111/nph.14910
[48]

Chen C, Li J, Feng J, Liu B, Feng L, et al. 2021. sRNAanno-a database repository of uniformly annotated small RNAs in plants. Horticulture Research 8:45

doi: 10.1038/s41438-021-00480-8
[49]

Willmann MR, Poethig RS. 2007. Conservation and evolution of miRNA regulatory programs in plant development. Current Opinion in Plant Biology 10:503−11

doi: 10.1016/j.pbi.2007.07.004
[50]

Huang D, Koh C, Feurtado JA, Tsang EWT, Cutler AJ. 2013. MicroRNAs and their putative targets in Brassica napus seed maturation. BMC Genomics 14:140

doi: 10.1186/1471-2164-14-140
[51]

Pan F, Wang Y, Liu H, Wu M, Chu W, et al. 2017. Genome-wide Identification and expression analysis of SBP-like transcription factor genes in Moso Bamboo (Phyllostachys edulis). BMC Genomics 18:486

doi: 10.1186/s12864-017-3882-4
[52]

Zhu H, Zhang Y, Tang R, Qu H, Duan X, et al. 2019. Banana SRNAome and degradome identify microRNAs functioning in differential responses to temperature stress. BMC genomics 20:33

doi: 10.1186/s12864-018-5395-1
[53]

Dröge-Laser W, Snoek BL, Snel B, Weiste C. 2018. The Arabidopsis bZIP transcription factor family-an update. Current Opinion in Plant Biology 45:36−49

doi: 10.1016/j.pbi.2018.05.001
[54]

He Q, Cai H, Bai M, Zhang M, Chen F, et al. 2020. A soybean bZIP transcription factor GmbZIP19 confers multiple biotic and abiotic stress responses in plant. International Journal of Molecular Sciences 21:4701

doi: 10.3390/ijms21134701
[55]

Chang C, Liu Z, Wang Y, Tang Z, Yu F. 2019. A bZIP transcription factor, CaLMF, mediated light-regulated camptothecin biosynthesis in Camptotheca acuminata. Tree Physiology 39:372−80

doi: 10.1093/treephys/tpy106
[56]

Zhang Y, Wang L. 2005. The WRKY transcription factor superfamily: its origin in eukaryotes and expansion in plants. BMC Evolutionary Biology 5:1

doi: 10.1186/1471-2148-5-1
[57]

Sun W, Ma Z, Chen H, Liu M. 2020. Genome-wide Investigation of WRKY transcription factors in Tartary Buckwheat (Fagopyrum tataricum) and their potential roles in regulating growth and development. Peer J 8:e8727

doi: 10.7717/peerj.8727
[58]

Jiang W, Fu X, Pan Q, Tang Y, Shen Q, et al. 2016. Overexpression of AaWRKY1 leads to an enhanced content of Artemisinin in Artemisia annua. Biomed Research International 2016:7314971

doi: 10.1155/2016/7314971
[59]

Chen WH, Li PF, Chen MK, Lee YI, Yang CH. 2015. Forever young flower negatively regulates ethylene response DNA-binding factors by activating an ethylene-responsive factor to control Arabidopsis floral organ senescence and abscission. Plant Physiology 168:1666−83

doi: 10.1104/pp.15.00433