[1]

IPCC. 2017. IPCC Expert Meeting on Mitigation, Sustainability and Climate Stabilization Scenarios. Meeting report. IPCC Working Group III Technical Support Unit, Imperial College London, London, the United Kingdom. https://www.ipcc.ch/site/assets/uploads/2018/02/IPCC_2017_EMR_Scenarios.pdf

[2]

Song X, Bai P, Ding J, Li J. 2021. Effect of vapor pressure deficit on growth and water status in muskmelon and cucumber. Plant Science 303:110755

doi: 10.1016/j.plantsci.2020.110755
[3]

Iraqi D, Gagnon S, Dubé S, Gosselin A. 1995. Vapor pressure deficit (VPD) effects on the physiology and yield of greenhouse tomato. HortScience 30:846E−846

doi: 10.21273/HORTSCI.30.4.846E
[4]

Li Q, Wei M, Li Y, Feng G, Wang Y, et al. 2019. Effects of soil moisture on water transport, photosynthetic carbon gain and water use efficiency in tomato are influenced by evaporative demand. Agricultural Water Management 226:105818

doi: 10.1016/j.agwat.2019.105818
[5]

Zhang D, Jiao X, Du Q, Song X, Li J. 2018. Reducing the excessive evaporative demand improved photosynthesis capacity at low costs of irrigation via regulating water driving force and moderating plant water stress of two tomato cultivars. Agricultural Water Management 199:22−33

doi: 10.1016/j.agwat.2017.11.014
[6]

Grossiord C, Buckley TN, Cernusak LA, Novick KA, Poulter B, et al. 2020. Plant responses to rising vapor pressure deficit. New Phytologist 226:1550−66

doi: 10.1111/nph.16485
[7]

Williams AP, Allen CD, Macalady AK, Griffin D, Woodhouse CA, et al. 2013. Temperature as a potent driver of regional forest drought stress and tree mortality. Nature Climate Change 3:292−97

doi: 10.1038/nclimate1693
[8]

Williams AP, Seager R, Berkelhammer M, Macalady AK, Crimmins MA, et al. 2014. Causes and implications of extreme atmospheric moisture demand during the record-breaking 2011 wildfire season in the southwestern United States. Journal of Applied Meteorology and Climatology 53:2671−84

doi: 10.1175/JAMC-D-14-0053.1
[9]

Reitz NF, Mitcham EJ. 2021. Lignification of tomato (Solanum lycopersicum) pericarp tissue during blossom-end rot development. Scientia Horticulturae 276:109759

doi: 10.1016/j.scienta.2020.109759
[10]

Reitz NF, Shackel KA, Mitcham EJ. 2021. Differential effects of excess calcium applied to whole plants vs. excised fruit tissue on blossom-end rot in tomato. Scientia Horticulturae 290:110514

doi: 10.1016/j.scienta.2021.110514
[11]

Seager R, Hooks A, Williams AP, Cook B, Nakamura J, et al. 2015. Climatology, variability, and trends in the U.S. vapor pressure deficit, an important fire-related meteorological quantity. Journal of Applied Meteorology and Climatology 54:1121−41

doi: 10.1175/JAMC-D-14-0321.1
[12]

Yu X, Zhao M, Wang X, Jiao X, Song X, et al. 2022. Reducing vapor pressure deficit improves calcium absorption by optimizing plant structure, stomatal morphology, and aquaporins in tomatoes. Environmental and Experimental Botany 195:104786

doi: 10.1016/j.envexpbot.2022.104786
[13]

Amitrano C, Arena C, Rouphael Y, De Pascale S, De Micco V. 2019. Vapour pressure deficit: the hidden driver behind plant morphofunctional traits in controlled environments. Annals of Applied Biology 175:313−25

doi: 10.1111/aab.12544
[14]

Lu N, Nukaya T, Kamimura T, Zhang D, Kurimoto I, et al. 2015. Control of vapor pressure deficit (VPD) in greenhouse enhanced tomato growth and productivity during the winter season. Scientia Horticulturae 197:17−23

doi: 10.1016/j.scienta.2015.11.001
[15]

Zhang D, Zhang Z, Li J, Chang Y, Du Q, et al. 2015. Regulation of vapor pressure deficit by greenhouse micro-fog systems improved growth and productivity of tomato via enhancing photosynthesis during summer season. PLoS ONE 10:e0133919

doi: 10.1371/journal.pone.0133919
[16]

Gilliham M, Dayod M, Hocking BJ, Xu B, Conn SJ, et al. 2011. Calcium delivery and storage in plant leaves: exploring the link with water flow. Journal of Experimental Botany 62:2233−50

doi: 10.1093/jxb/err111
[17]

Wheeler TD, Stroock AD. 2008. The transpiration of water at negative pressures in a synthetic tree. Nature 455:208−12

doi: 10.1038/nature07226
[18]

Bacher H, Sharaby Y, Walia H, Peleg Z. 2022. Modifying root-to-shoot ratio improves root water influxes in wheat under drought stress. Journal of Experimental Botany 73:1643−54

doi: 10.1093/jxb/erab500
[19]

Fricke W. 2017. Water transport and energy. Plant, Cell & Environment 40:977−94

doi: 10.1111/pce.12848
[20]

Novick KA, Miniat CF, Vose JM. 2016. Drought limitations to leaf-level gas exchange: results from a model linking stomatal optimization and cohesion tension theory. Plant, Cell & Environment 39:583−96

doi: 10.1111/pce.12657
[21]

Pantin F, Blatt MR. 2018. Stomatal response to humidity: blurring the boundary between active and passive movement. Plant Physiology 176:485−88

doi: 10.1104/pp.17.01699
[22]

Zhang D, Du Q, Zhang Z, Jiao X, Song X, et al. 2017. Vapour pressure deficit control in relation to water transport and water productivity in greenhouse tomato production during summer. Scientific Reports 7:43461

doi: 10.1038/srep43461
[23]

Du Q, Jiao X, Song X, Zhang J, Bai P. 2020. The response of water dynamics to long-term high vapor pressure deficit is mediated by anatomical adaptations in plants. Frontiers in Plant Science 11:758

doi: 10.3389/fpls.2020.00758
[24]

Hedrich R, Neher E. 1987. Cytoplasmic calcium regulates voltage-dependent ion channels in plant vacuoles. Nature 329:833−36

doi: 10.1038/329833a0
[25]

John GP, Scoffoni C, Buckley TN, Villar R, Poorter H, et al. 2017. The anatomical and compositional basis of leaf mass per area. Ecology Letters 20:412−25

doi: 10.1111/ele.12739
[26]

Jiao X, Yu X, Ding J, Du Q, Zhang J, et al. 2022. Effects of rising VPD on the nutrient uptake, water status and photosynthetic system of tomato plants at different nitrogen applications under low temperature. Scientia Horticulturae 304:111335

doi: 10.1016/j.scienta.2022.111335
[27]

Sack L, Scoffoni C. 2013. Leaf venation: structure, function, development, evolution, ecology and applications in the past, present and future. New Phytologist 198:983−1000

doi: 10.1111/nph.12253
[28]

Tomás M, Flexas J, Copolovici L, Galmés J, Hallik L, et al. 2013. Importance of leaf anatomy in determining mesophyll diffusion conductance to CO2 across species: quantitative limitations and scaling up by models. Journal of Experimental Botany 64:2269−81

doi: 10.1093/jxb/ert086
[29]

Niinemets Ü, Reichstein M. 2003. Controls on the emission of plant volatiles through stomata: a sensitivity analysis. Journal of Geophysical Research 108:4211

doi: 10.1029/2002JD002626
[30]

Syvertsen JP, Lloyd J, McConchie C, Kriedemann PE, Farquhar GD. 1995. On the relationship between leaf anatomy and CO2 diffusion through the mesophyll of hypostomatous leaves. Plant, Cell & Environment 18:149−57

doi: 10.1111/j.1365-3040.1995.tb00348.x
[31]

Du Q, Liu T, Jiao X, Song X, Zhang J, et al. 2019. Leaf anatomical adaptations have central roles in photosynthetic acclimation to humidity. Journal of Experimental Botany 70:4949−61

doi: 10.1093/jxb/erz238
[32]

Levionnois S, Kaack L, Heuret P, Abel N, Ziegler C, et al. 2022. Pit characters determine drought-induced embolism resistance of leaf xylem across 18 Neotropical tree species. Plant Physiology 190:371−86

doi: 10.1093/plphys/kiac223
[33]

Umebayashi T, Sperry JS, Smith DD, Love DM. 2019. 'Pressure fatigue': the influence of sap pressure cycles on cavitation vulnerability in Acer negundo. Tree Physiolog 39:740−46

doi: 10.1093/treephys/tpy148
[34]

Knipfer T, Reyes C, Earles JM, Berry ZC, Johnson D, et al. 2019. Spatiotemporal coupling of vessel cavitation and discharge of stored xylem water in a tree sapling. Plant Physiology 179:1658−68

doi: 10.1104/pp.18.01303
[35]

Tyree MT, Yang S. 1990. Water-storage capacity of Thuja, Tsuga and Acer stems measured by dehydration isotherms. Planta 182:420−26

doi: 10.1007/BF02411394
[36]

Feng F, Losso A, Tyree M, Zhang S, Mayr S. 2021. Cavitation fatigue in conifers: a study on eight European species. Plant Physiology 186:1580−90

doi: 10.1093/plphys/kiab170
[37]

Herbette S, Cochard H. 2010. Calcium is a major determinant of xylem vulnerability to cavitation. Plant Physiology 153:1932−39

doi: 10.1104/pp.110.155200
[38]

Giday H, Fanourakis D, Kjaer KH, Fomsgaard IS, Ottosen CO. 2014. Threshold response of stomatal closing ability to leaf abscisic acid concentration during growth. ournal of Experimental Botany 65:4361−70

doi: 10.1093/jxb/eru216
[39]

Jalakas P, Takahashi Y, Waadt R, Schroeder JI, Merilo E. 2021. Molecular mechanisms of stomatal closure in response to rising vapour pressure deficit. New Phytologist 232:468−75

doi: 10.1111/nph.17592
[40]

Lawson T, Blatt MR. 2014. Stomatal size, speed, and responsiveness impact on photosynthesis and water use efficiency. Plant Physiology 164:1556−70

doi: 10.1104/pp.114.237107
[41]

Buckley TN, John GP, Scoffoni C, Sack L. 2017. The sites of evaporation within leaves. Plant Physiology 173:1763−82

doi: 10.1104/pp.16.01605
[42]

Buckley TN, Sack L, Gilbert ME. 2011. The role of bundle sheath extensions and life form in stomatal responses to leaf water status. Plant Physiology 156:962−73

doi: 10.1104/pp.111.175638
[43]

Buckley TN. 2005. The control of stomata by water balance. New Phytologist 168:275−92

doi: 10.1111/j.1469-8137.2005.01543.x
[44]

Comstock JP, Mencuccini MM. 1998. Control of stomatal conductance by leaf water potential in Hymenoclea salsola (T. & G.), a desert subshrub. Plant, Cell & Environment 21:1029−238

doi: 10.1046/j.1365-3040.1998.00353.x
[45]

McAdam SAM, Brodribb TJ. 2016. Linking turgor with ABA biosynthesis: implications for stomatal responses to vapor pressure deficit across land plants. Plant Physiology 171:2008−16

doi: 10.1104/pp.16.00380
[46]

Zhang J, Ding J, Ibrahim M, Jiao X, Song X, et al. 2021. Effects of the interaction between vapor-pressure deficit and potassium on the photosynthesis system of tomato seedlings under low temperature. Scientia Horticulturae 283:110089

doi: 10.1016/j.scienta.2021.110089
[47]

Monteith JL. 1995. A reinterpretation of stomatal responses to humidity. Plant, Cell & Environment 18:357−64

doi: 10.1111/j.1365-3040.1995.tb00371.x
[48]

Fanourakis D, Heuvelink E, Carvalho SMP. 2013. A comprehensive analysis of the physiological and anatomical components involved in higher water loss rates after leaf development at high humidity. Journal of Plant Physiology 170:890−98

doi: 10.1016/j.jplph.2013.01.013
[49]

Giday H, Kjaer KH, Fanourakis D, Ottosen CO. 2013. Smaller stomata require less severe leaf drying to close: a case study in Rosa hydrida. Journal of Plant Physiology 170:1309−16

doi: 10.1016/j.jplph.2013.04.007
[50]

Sussmilch FC, Brodribb TJ, McAdam SAM. 2017. Up-regulation of NCED3 and ABA biosynthesis occur within minutes of a decrease in leaf turgor but AHK1 is not required. Journal of Experimental Botany 68:2913−18

doi: 10.1093/jxb/erx124
[51]

Buckley TN. 2016. Stomatal responses to humidity: has the 'black box' finally been opened? Plant, Cell & Environment 39:482−84

doi: 10.1111/pce.12651
[52]

Ma Y, Szostkiewicz I, Korte A, Moes D, Yang Y, et al. 2009. Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 324:1064−68

doi: 10.1126/science.1172408
[53]

Park SY, Fung P, Nishimura N, Jensen DR, Fujii H, et al. 2009. Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324:1068−71

doi: 10.1126/science.1173041
[54]

Assmann SM, Snyder JA, Lee YRJ. 2000. ABA-deficient (aba1) and ABA-insensitive (abi1-1, abi2-1) mutants of Arabidopsis have a wild-type stomatal response to humidity. Plant, Cell & Environment 23:387−95

doi: 10.1046/j.1365-3040.2000.00551.x
[55]

Xie X, Wang Y, Williamson L, Holroyd GH, Tagliavia C, et al. 2006. The identification of genes involved in the stomatal response to reduced atmospheric relative humidity. Current Biology 16:882−87

doi: 10.1016/j.cub.2006.03.028
[56]

Bunce JA. 1997. Does transpiration control stomatal responses to water vapour pressure deficit? Plant, Cell & Environment 19:131−35

doi: 10.1046/j.1365-3040.1997.d01-3.x
[57]

Chater CCC, Oliver J, Casson S, Gray JE. 2014. Putting the brakes on: abscisic acid as a central environmental regulator of stomatal development. New Phytologist 202:376−91

doi: 10.1111/nph.12713
[58]

Tardieu F, Davies WJ. 1993. Integration of hydraulic and chemical signalling in the control of stomatal conductance and water status of droughted plants. Plant, Cell & Environment 16:341−49

doi: 10.1111/j.1365-3040.1993.tb00880.x
[59]

Aliniaeifard S, Malcolm Matamoros P, van Meeteren U. 2014. Stomatal malfunctioning under low VPD conditions: induced by alterations in stomatal morphology and leaf anatomy or in the ABA signaling? Physiologia Plantarum 152:688−99

doi: 10.1111/ppl.12216
[60]

Merilo E, Yarmolinsky D, Jalakas P, Parik H, Tulva I, et al. 2018. Stomatal VPD response: there is more to the story than ABA. Plant Physiology 176:851−64

doi: 10.1104/pp.17.00912
[61]

Carins Murphy MR, Jordan GJ, Brodribb TJ. 2014. Acclimation to humidity modifies the link between leaf size and the density of veins and stomata. Plant, Cell & Environment 37:124−31

doi: 10.1111/pce.12136
[62]

Flexas J, Scoffoni C, Gago J, Sack L. 2013. Leaf mesophyll conductance and leaf hydraulic conductance: an introduction to their measurement and coordination. Journal of Experimental Botany 64:3965−81

doi: 10.1093/jxb/ert319
[63]

Aliniaeifard S, van Meeteren U. 2016. Stomatal characteristics and desiccation response of leaves of cut chrysanthemum (Chrysanthemum morifolium) flowers grown at high air humidity. Scientia Horticulturae 205:84−89

doi: 10.1016/j.scienta.2016.04.025
[64]

Caine RS, Yin X, Sloan J, Harrison EL, Mohammed U, et al. 2019. Rice with reduced stomatal density conserves water and has improved drought tolerance under future climate conditions. New Phytologist 221:371−84

doi: 10.1111/nph.15344
[65]

Silva GS, Gavassi MA, Nogueira MA, Habermann G. 2018. Aluminum prevents stomatal conductance from responding to vapor pressure deficit in Citrus limonia. Environmental and Experimental Botany 155:662−71

doi: 10.1016/j.envexpbot.2018.08.017
[66]

Tomeo NJ, Rosenthal DM. 2017. Variable mesophyll conductance among soybean cultivars sets a tradeoff between photosynthesis and water-use-efficiency. Plant Physiology 174:241−57

doi: 10.1104/pp.16.01940
[67]

Wang X, Du T, Huang J, Peng S, Xiong D. 2018. Leaf hydraulic vulnerability triggers the decline in stomatal and mesophyll conductance during drought in rice. Journal of Experimental Botany 69:4033−45

doi: 10.1093/jxb/ery188
[68]

Lawlor DW, Tezara W. 2009. Causes of decreased photosynthetic rate and metabolic capacity in water-deficient leaf cells: a critical evaluation of mechanisms and integration of processes. Annals of Botany 103:561−79

doi: 10.1093/aob/mcn244
[69]

Valentini R, Epron D, de Angelis P, Matteucci G, Dreyer E. 1995. In situ estimation of net CO2 assimilation, photosynthetic electron flow and photorespiration in Turkey oak (Q. cerris L.) leaves: diurnal cycles under different levels of water supply. Plant, Cell & Environment 18:631−40

doi: 10.1111/j.1365-3040.1995.tb00564.x
[70]

Yang Y, Zhang Q, Huang G, Peng S, Li Y. 2020. Temperature response of photosynthesis and hydraulic conductance in rice and wheat. Plant, Cell & Environment 43:1437−51

doi: 10.1111/pce.13743
[71]

Shirke PA, Pathre UV. 2004. Influence of leaf-to-air vapour pressure deficit (VPD) on the biochemistry and physiology of photosynthesis in Prosopis juliflora. Journal of Experimental Botany 55:2111−20

doi: 10.1093/jxb/erh229
[72]

Evans JR, Kaldenhoff R, Genty B, Terashima I. 2009. Resistances along the CO2 diffusion pathway inside leaves. Journal of Experimental Botany 60:2235−48

doi: 10.1093/jxb/erp117
[73]

Du Q, Zhang D, Jiao X, Song X, Li J. 2018. Effects of atmospheric and soil water status on photosynthesis and growth in tomato. Plant, Soil and Environment 64:13−19

doi: 10.17221/701/2017-PSE
[74]

Bongi G, Loreto F. 1989. Gas-exchange properties of salt stressed olive (Olea europea L.) leaves. Plant Physiology 90:1408−16

doi: 10.1104/pp.90.4.1408
[75]

Warren CR. 2008. Soil water deficits decrease the internal conductance to CO2 transfer but atmospheric water deficits do not. Journal of Experimental Botany 59:327−34

doi: 10.1093/jxb/erm314
[76]

Perez-Martin A, Flexas J, Ribas-Carbó M, Bota J, Tomás M, et al. 2009. Interactive effects of soil water deficit and air vapour pressure deficit on mesophyll conductance to CO2 in Vitis vinifera and Olea europaea. Journal of Experimental Botany 60:2391−405

doi: 10.1093/jxb/erp145
[77]

Qiu CQ, Ethier G, Pepin S, Dubé P, Desjardins Y, et al. 2017. Persistent negative temperature response of mesophyll conductance in red raspberry (Rubus idaeus L.) leaves under both high and low vapour pressure deficits: a role for abscisic acid? Plant, Cell & Environment 40:1940−59

doi: 10.1111/pce.12997
[78]

Schwerbrock R, Leuschner C. 2016. Air humidity as key determinant of the morphogenesis and productivity of the rare temperate woodland fern Polystichum braunii. Plant Biology 18:649−57

doi: 10.1111/plb.12444
[79]

Sellin A, Rosenvald K, Õunapuu-Pikas E, Tullus A, Ostonen I, et al. 2015. Elevated air humidity affects hydraulic traits and tree size but not biomass allocation in young silver birches (Betula pendula). Frontiers in Plant Science 6:860

doi: 10.3389/fpls.2015.00860
[80]

Evans JR, von Caemmerer S. 1996. Carbon dioxide diffusion inside leaves. Plant Physiology 110:339−46

doi: 10.1104/pp.110.2.339
[81]

Perez-Martin A, Michelazzo C, Torres-Ruiz JM, Flexas J, Fernández JE, et al. 2014. Regulation of photosynthesis and stomatal and mesophyll conductance under water stress and recovery in olive trees: Correlation with gene expression of carbonic anhydrase and aquaporins. Journal of Experimental Botany 65:3143−56

doi: 10.1093/jxb/eru160
[82]

Rodriguez-Dominguez CM, Buckley TN, Egea G, De Cires A, Hernandez-Santana V, et al. 2016. Most stomatal closure in woody species under moderate drought can be explained by stomatal responses to leaf turgor. Plant, Cell & Environment 39:2014−26

doi: 10.1111/pce.12774
[83]

Brodribb TJ, McAdam SAM. 2017. Evolution of the stomatal regulation of plant water content. Plant Physiology 174:639−49

doi: 10.1104/pp.17.00078
[84]

Liu Y, Song J, Wang M, Li N, Niu C, et al. 2015. Coordination of xylem hydraulics and stomatal regulation in keeping the integrity of xylem water transport in shoots of two compound-leaved tree species. Tree Physiology 35:1333−42

doi: 10.1093/treephys/tpv061
[85]

Dewar R, Mauranen A, Mäkelä A, Hölttä T, Medlyn B, et al. 2018. New insights into the covariation of stomatal, mesophyll and hydraulic conductances from optimization models incorporating nonstomatal limitations to photosynthesis. New Phytologist 217:571−85

doi: 10.1111/nph.14848
[86]

Adachi S, Nakae T, Uchida M, Soda K, Takai T, et al. 2013. The mesophyll anatomy enhancing CO2 diffusion is a key trait for improving rice photosynthesis. Journal of Experimental Botany 64:1061−72

doi: 10.1093/jxb/ers382
[87]

Fini A, Loreto F, Tattini M, Giordano C, Ferrini F, et al. 2016. Mesophyll conductance plays a central role in leaf functioning of Oleaceae species exposed to contrasting sunlight irradiance. Physiologia Plantarum 157:54−68

doi: 10.1111/ppl.12401
[88]

Barbour MM, Bachmann S, Bansal U, Bariana H, Sharp P. 2016. Genetic control of mesophyll conductance in common wheat. New Phytologist 209:461−65

doi: 10.1111/nph.13628
[89]

Olsovska K, Kovar M, Brestic M, Zivcak M, Slamka P, et al. 2016. Genotypically identifying wheat mesophyll conductance regulation under progressive drought stress. Frontiers in Plant Science 7:1111

doi: 10.3389/fpls.2016.01111
[90]

Evans JR, Caemmerer SV, Setchell BA, Hudson GS. 1994. The relationship between CO2 transfer conductance and leaf anatomy in transgenic tobacco with a reduced content of rubisco. Functional Plant Biology 21:475−95

doi: 10.1071/pp9940475
[91]

Lu Z, Lu J, Pan Y, Lu P, Li X, et al. 2016. Anatomical variation of mesophyll conductance under potassium deficiency has a vital role in determining leaf photosynthesis. Plant, Cell & Environment 39:2428−39

doi: 10.1111/pce.12795
[92]

Schulze ED. 1986. Carbon dioxide and water vapor exchange in response to drought in the soil. Annual Review of Plant Physiology 37:247−74

doi: 10.1146/annurev.pp.37.060186.001335
[93]

Jiao X, Song X, Zhang D, Du Q, Li J. 2019. Coordination between vapor pressure deficit and CO2 on the regulation of photosynthesis and productivity in greenhouse tomato production. Scientific Reports 9:8700

doi: 10.1038/s41598-019-45232-w
[94]

Arve LE, Terfa MT, Gislerød HR, Olsen JE, Torre S. 2013. High relative air humidity and continuous light reduce stomata functionality by affecting the ABA regulation in rose leaves. Plant, Cell & Environment 36:382−92

doi: 10.1111/j.1365-3040.2012.02580.x
[95]

López J, Way DA, Sadok W. 2021. Systemic effects of rising atmospheric vapor pressure deficit on plant physiology and productivity. Global Change Biology 27:1704−20

doi: 10.1111/gcb.15548
[96]

Barber SA. 1962. A diffusion and mass-flow concept of soil nutrient availability. Soil Science 93:39−49

doi: 10.1097/00010694-196201000-00007
[97]

Cramer MD, Hoffmann V, Verboom GA. 2008. Nutrient availability moderates transpiration in Ehrharta calycina. New New Phytologist 179:1048−57

doi: 10.1111/j.1469-8137.2008.02510.x
[98]

Yang Z, Sinclair TR, Zhu M, Messina CD, Cooper M, et al. 2012. Temperature effect on transpiration response of maize plants to vapour pressure deficit. Environmental and Experimental Botany 78:157−62

doi: 10.1016/j.envexpbot.2011.12.034
[99]

Novák V, Vidovič J. 2003. Transpiration and nutrient uptake dynamics in maize (Zea mays L.). Ecological Modelling 166:99−107

doi: 10.1016/S0304-3800(03)00102-9
[100]

Cernusak LA, Winter K, Turner BL. 2009. Plant δ15N correlates with the transpiration efficiency of nitrogen acquisition in tropical trees. Plant Physiology 151:1667−76

doi: 10.1104/pp.109.145870
[101]

Shrestha RK, Engel K, Becker M. 2015. Effect of transpiration on iron uptake and translocation in lowland rice. Journal of Plant Nutrition and Soil Science 178:365−69

doi: 10.1002/jpln.201400361
[102]

Leuschner C. 2002. Air humidity as an ecological factor for woodland herbs: leaf water status, nutrient uptake, leaf anatomy, and productivity of eight species grown at low or high vpd levels. Flora - Morphology, Distribution, Functional Ecology of Plants 197:262−74

doi: 10.1078/0367-2530-00040
[103]

Parts K, Tedersoo L, Lõhmus K, Kupper P, Rosenvald K, et al. 2013. Increased air humidity and understory composition shape short root traits and the colonizing ectomycorrhizal fungal community in silver birch stands. Forest Ecology and Management 310:720−28

doi: 10.1016/j.foreco.2013.09.017
[104]

Rosenvald K, Tullus A, Ostonen I, Uri V, Kupper P, et al. 2014. The effect of elevated air humidity on young silver birch and hybrid aspen biomass allocation and accumulation – acclimation mechanisms and capacity. Forest Ecology and Management 330:252−60

doi: 10.1016/j.foreco.2014.07.016
[105]

Jiao X, Yu X, Yuan Y, Li J. 2022. Effects of vapor pressure deficit combined with different N levels on tomato seedling anatomy, photosynthetic performance, and N uptake. Plant Science 324:111448

doi: 10.1016/j.plantsci.2022.111448
[106]

Kupper P, Rohula G, Inno L, Ostonen I, Sellin A, et al. 2017. Impact of high daytime air humidity on nutrient uptake and night-time water flux in silver birch, a boreal forest tree species. Regional Environmental Change 17:2149−57

doi: 10.1007/s10113-016-1092-2
[107]

Zhang J, Jiao X, Du Q, Song X, Ding J, et al. 2021. Effects of vapor pressure deficit and potassium supply on root morphology, potassium uptake, and biomass allocation of tomato seedlings. Journal of Plant Growth Regulation 40:509−18

doi: 10.1007/s00344-020-10115-2
[108]

Lihavainen J, Keinänen M, Keski-Saari S, Kontunen-Soppela S, Sõber A, et al. 2016. Artificially decreased vapour pressure deficit in field conditions modifies foliar metabolite profiles in birch and aspen. Journal of Experimental Botany 67:4367−78

doi: 10.1093/jxb/erw219
[109]

Sinclair TR, Vallerani C, Shilling DG. 1995. Transpiration inhibition by stored xylem sap from well-watered maize plants. Plant, Cell & Environment 18:1441−45

doi: 10.1111/j.1365-3040.1995.tb00206.x
[110]

Keiser JR, Mullen RE. 1993. Calcium and relative humidity effects on soybean seed nutrition and seed quality. Crop Science 33:1345−49

doi: 10.2135/cropsci1993.0011183X003300060044x
[111]

McLaughlin SB, Wimmer R. 1999. Calcium physiology and terrestrial ecosystem process. New Phytologist 142:373−417

doi: 10.1046/j.1469-8137.1999.00420.x
[112]

Taylor MD, Locascio SJ. 2004. Blossom-end rot: a calcium deficiency. Journal of Plant Nutrition 27:123−39

doi: 10.1081/PLN-120027551
[113]

Ho LC, White PJ. 2005. A cellular hypothesis for the induction of blossom-end rot in tomato fruit. Annals of Botany 95:571−81

doi: 10.1093/aob/mci065
[114]

Li YL, Stanghellini C, Challa H. 2001. Effect of electrical conductivity and transpiration on production of greenhouse tomato (Lycopersicon esculentum L.). Scientia Horticulturae 88:11−29

doi: 10.1016/S0304-4238(00)00190-4
[115]

Fernández JE, Alcon F, Diaz-Espejo A, Hernandez-Santana V, Cuevas MV. 2020. Water use indicators and economic analysis for on-farm irrigation decision: a case study of a super high density olive tree orchard. Agricultural Water Management 237:106074

doi: 10.1016/j.agwat.2020.106074
[116]

Bunce JA. 2016. Variation among Soybean cultivars in mesophyll conductance and leaf water use efficiency. Plants 5:44

doi: 10.3390/plants5040044
[117]

Han J, Meng H, Wang S, Jiang C, Liu F, et al. 2016. Variability of mesophyll conductance and its relationship with water use efficiency in cotton leaves under drought pretreatment. Journal of Plant Physiology 194:61−71

doi: 10.1016/j.jplph.2016.03.014
[118]

Giuliani R, Koteyeva N, Voznesenskaya E, Evans MA, Cousins AB, et al. 2013. Coordination of leaf photosynthesis, transpiration, and structural traits in rice and wild relatives (Genus Oryza). Plant Physiology 162:1632−51

doi: 10.1104/pp.113.217497
[119]

Barbour MM, Warren CR, Farquhar GD, Forrester G, Brown H. 2010. Variability in mesophyll conductance between barley genotypes, and effects on transpiration efficiency and carbon isotope discrimination. Plant, Cell & Environment 33:1176−85

doi: 10.1111/j.1365-3040.2010.02138.x
[120]

Yu X, Zhang J, Zhang Y, Ma L, Jiao X, et al. 2023. Identification of optimal irrigation and fertilizer rates to balance yield, water and fertilizer productivity, and fruit quality in greenhouse tomatoes using TOPSIS. Scientia Horticulturae 311:111829

doi: 10.1016/j.scienta.2023.111829
[121]

He Z, Li M, Cai Z, Zhao R, Hong T, et al. 2021. Optimal irrigation and fertilizer amounts based on multi-level fuzzy comprehensive evaluation of yield, growth and fruit quality on cherry tomato. Agricultural Water Management 243:106360

doi: 10.1016/j.agwat.2020.106360
[122]

Leonardi C, Guichard S, Bertin N. 2000. High vapour pressure deficit influences growth, transpiration and quality of tomato fruits. Scientia Horticulturae 84:285−96

doi: 10.1016/S0304-4238(99)00127-2
[123]

Bertin N, Guichard S, Leonardi C, Longuenesse JJ, Langlois D, et al. 2000. Seasonal evolution of the quality of fresh glasshouse tomatoes under mediterranean conditions, as affected by air vapour pressure deficit and plant fruit load. Annals of Botany 85:741−50

doi: 10.1006/anbo.2000.1123
[124]

Agbna GHD, She D, Liu Z, Nazar AE, Shao GC, et al. 2017. Effects of deficit irrigation and biochar addition on the growth, yield, and quality of tomato. Scientia Horticulturae 222:90−101

doi: 10.1016/j.scienta.2017.05.004
[125]

Lu J, Shao G, Cui J, Wang X, Keabetswe L. 2019. Yield, fruit quality and water use efficiency of tomato for processing under regulated deficit irrigation: a meta-analysis. Agricultural Water Management 222:301−12

doi: 10.1016/j.agwat.2019.06.008
[126]

Chen J, Kang S, Du T, Guo P, Qiu R, et al. 2014. Modeling relations of tomato yield and fruit quality with water deficit at different growth stages under greenhouse condition. Agricultural Water Management 146:131−48

doi: 10.1016/j.agwat.2014.07.026
[127]

Chen J, Kang S, Du T, Qiu R, Guo P, et al. 2013. Quantitative response of greenhouse tomato yield and quality to water deficit at different growth stages. Agricultural Water Management 129:152−62

doi: 10.1016/j.agwat.2013.07.011
[128]

Wang F, Kang S, Du T, Li F, Qiu R, et al. 2011. Determination of comprehensive quality index for tomato and its response to different irrigation treatments. Agricultural Water Management 98:1228−38

doi: 10.1016/j.agwat.2011.03.004