[1]
|
IPCC. 2017. IPCC Expert Meeting on Mitigation, Sustainability and Climate Stabilization Scenarios. Meeting report. IPCC Working Group III Technical Support Unit, Imperial College London, London, the United Kingdom. https://www.ipcc.ch/site/assets/uploads/2018/02/IPCC_2017_EMR_Scenarios.pdf
|
[2]
|
Song X, Bai P, Ding J, Li J. 2021. Effect of vapor pressure deficit on growth and water status in muskmelon and cucumber. Plant Science 303:110755 doi: 10.1016/j.plantsci.2020.110755
CrossRef Google Scholar
|
[3]
|
Iraqi D, Gagnon S, Dubé S, Gosselin A. 1995. Vapor pressure deficit (VPD) effects on the physiology and yield of greenhouse tomato. HortScience 30:846E−846 doi: 10.21273/HORTSCI.30.4.846E
CrossRef Google Scholar
|
[4]
|
Li Q, Wei M, Li Y, Feng G, Wang Y, et al. 2019. Effects of soil moisture on water transport, photosynthetic carbon gain and water use efficiency in tomato are influenced by evaporative demand. Agricultural Water Management 226:105818 doi: 10.1016/j.agwat.2019.105818
CrossRef Google Scholar
|
[5]
|
Zhang D, Jiao X, Du Q, Song X, Li J. 2018. Reducing the excessive evaporative demand improved photosynthesis capacity at low costs of irrigation via regulating water driving force and moderating plant water stress of two tomato cultivars. Agricultural Water Management 199:22−33 doi: 10.1016/j.agwat.2017.11.014
CrossRef Google Scholar
|
[6]
|
Grossiord C, Buckley TN, Cernusak LA, Novick KA, Poulter B, et al. 2020. Plant responses to rising vapor pressure deficit. New Phytologist 226:1550−66 doi: 10.1111/nph.16485
CrossRef Google Scholar
|
[7]
|
Williams AP, Allen CD, Macalady AK, Griffin D, Woodhouse CA, et al. 2013. Temperature as a potent driver of regional forest drought stress and tree mortality. Nature Climate Change 3:292−97 doi: 10.1038/nclimate1693
CrossRef Google Scholar
|
[8]
|
Williams AP, Seager R, Berkelhammer M, Macalady AK, Crimmins MA, et al. 2014. Causes and implications of extreme atmospheric moisture demand during the record-breaking 2011 wildfire season in the southwestern United States. Journal of Applied Meteorology and Climatology 53:2671−84 doi: 10.1175/JAMC-D-14-0053.1
CrossRef Google Scholar
|
[9]
|
Reitz NF, Mitcham EJ. 2021. Lignification of tomato (Solanum lycopersicum) pericarp tissue during blossom-end rot development. Scientia Horticulturae 276:109759 doi: 10.1016/j.scienta.2020.109759
CrossRef Google Scholar
|
[10]
|
Reitz NF, Shackel KA, Mitcham EJ. 2021. Differential effects of excess calcium applied to whole plants vs. excised fruit tissue on blossom-end rot in tomato. Scientia Horticulturae 290:110514 doi: 10.1016/j.scienta.2021.110514
CrossRef Google Scholar
|
[11]
|
Seager R, Hooks A, Williams AP, Cook B, Nakamura J, et al. 2015. Climatology, variability, and trends in the U.S. vapor pressure deficit, an important fire-related meteorological quantity. Journal of Applied Meteorology and Climatology 54:1121−41 doi: 10.1175/JAMC-D-14-0321.1
CrossRef Google Scholar
|
[12]
|
Yu X, Zhao M, Wang X, Jiao X, Song X, et al. 2022. Reducing vapor pressure deficit improves calcium absorption by optimizing plant structure, stomatal morphology, and aquaporins in tomatoes. Environmental and Experimental Botany 195:104786 doi: 10.1016/j.envexpbot.2022.104786
CrossRef Google Scholar
|
[13]
|
Amitrano C, Arena C, Rouphael Y, De Pascale S, De Micco V. 2019. Vapour pressure deficit: the hidden driver behind plant morphofunctional traits in controlled environments. Annals of Applied Biology 175:313−25 doi: 10.1111/aab.12544
CrossRef Google Scholar
|
[14]
|
Lu N, Nukaya T, Kamimura T, Zhang D, Kurimoto I, et al. 2015. Control of vapor pressure deficit (VPD) in greenhouse enhanced tomato growth and productivity during the winter season. Scientia Horticulturae 197:17−23 doi: 10.1016/j.scienta.2015.11.001
CrossRef Google Scholar
|
[15]
|
Zhang D, Zhang Z, Li J, Chang Y, Du Q, et al. 2015. Regulation of vapor pressure deficit by greenhouse micro-fog systems improved growth and productivity of tomato via enhancing photosynthesis during summer season. PLoS ONE 10:e0133919 doi: 10.1371/journal.pone.0133919
CrossRef Google Scholar
|
[16]
|
Gilliham M, Dayod M, Hocking BJ, Xu B, Conn SJ, et al. 2011. Calcium delivery and storage in plant leaves: exploring the link with water flow. Journal of Experimental Botany 62:2233−50 doi: 10.1093/jxb/err111
CrossRef Google Scholar
|
[17]
|
Wheeler TD, Stroock AD. 2008. The transpiration of water at negative pressures in a synthetic tree. Nature 455:208−12 doi: 10.1038/nature07226
CrossRef Google Scholar
|
[18]
|
Bacher H, Sharaby Y, Walia H, Peleg Z. 2022. Modifying root-to-shoot ratio improves root water influxes in wheat under drought stress. Journal of Experimental Botany 73:1643−54 doi: 10.1093/jxb/erab500
CrossRef Google Scholar
|
[19]
|
Fricke W. 2017. Water transport and energy. Plant, Cell & Environment 40:977−94 doi: 10.1111/pce.12848
CrossRef Google Scholar
|
[20]
|
Novick KA, Miniat CF, Vose JM. 2016. Drought limitations to leaf-level gas exchange: results from a model linking stomatal optimization and cohesion tension theory. Plant, Cell & Environment 39:583−96 doi: 10.1111/pce.12657
CrossRef Google Scholar
|
[21]
|
Pantin F, Blatt MR. 2018. Stomatal response to humidity: blurring the boundary between active and passive movement. Plant Physiology 176:485−88 doi: 10.1104/pp.17.01699
CrossRef Google Scholar
|
[22]
|
Zhang D, Du Q, Zhang Z, Jiao X, Song X, et al. 2017. Vapour pressure deficit control in relation to water transport and water productivity in greenhouse tomato production during summer. Scientific Reports 7:43461 doi: 10.1038/srep43461
CrossRef Google Scholar
|
[23]
|
Du Q, Jiao X, Song X, Zhang J, Bai P. 2020. The response of water dynamics to long-term high vapor pressure deficit is mediated by anatomical adaptations in plants. Frontiers in Plant Science 11:758 doi: 10.3389/fpls.2020.00758
CrossRef Google Scholar
|
[24]
|
Hedrich R, Neher E. 1987. Cytoplasmic calcium regulates voltage-dependent ion channels in plant vacuoles. Nature 329:833−36 doi: 10.1038/329833a0
CrossRef Google Scholar
|
[25]
|
John GP, Scoffoni C, Buckley TN, Villar R, Poorter H, et al. 2017. The anatomical and compositional basis of leaf mass per area. Ecology Letters 20:412−25 doi: 10.1111/ele.12739
CrossRef Google Scholar
|
[26]
|
Jiao X, Yu X, Ding J, Du Q, Zhang J, et al. 2022. Effects of rising VPD on the nutrient uptake, water status and photosynthetic system of tomato plants at different nitrogen applications under low temperature. Scientia Horticulturae 304:111335 doi: 10.1016/j.scienta.2022.111335
CrossRef Google Scholar
|
[27]
|
Sack L, Scoffoni C. 2013. Leaf venation: structure, function, development, evolution, ecology and applications in the past, present and future. New Phytologist 198:983−1000 doi: 10.1111/nph.12253
CrossRef Google Scholar
|
[28]
|
Tomás M, Flexas J, Copolovici L, Galmés J, Hallik L, et al. 2013. Importance of leaf anatomy in determining mesophyll diffusion conductance to CO2 across species: quantitative limitations and scaling up by models. Journal of Experimental Botany 64:2269−81 doi: 10.1093/jxb/ert086
CrossRef Google Scholar
|
[29]
|
Niinemets Ü, Reichstein M. 2003. Controls on the emission of plant volatiles through stomata: a sensitivity analysis. Journal of Geophysical Research 108:4211 doi: 10.1029/2002JD002626
CrossRef Google Scholar
|
[30]
|
Syvertsen JP, Lloyd J, McConchie C, Kriedemann PE, Farquhar GD. 1995. On the relationship between leaf anatomy and CO2 diffusion through the mesophyll of hypostomatous leaves. Plant, Cell & Environment 18:149−57 doi: 10.1111/j.1365-3040.1995.tb00348.x
CrossRef Google Scholar
|
[31]
|
Du Q, Liu T, Jiao X, Song X, Zhang J, et al. 2019. Leaf anatomical adaptations have central roles in photosynthetic acclimation to humidity. Journal of Experimental Botany 70:4949−61 doi: 10.1093/jxb/erz238
CrossRef Google Scholar
|
[32]
|
Levionnois S, Kaack L, Heuret P, Abel N, Ziegler C, et al. 2022. Pit characters determine drought-induced embolism resistance of leaf xylem across 18 Neotropical tree species. Plant Physiology 190:371−86 doi: 10.1093/plphys/kiac223
CrossRef Google Scholar
|
[33]
|
Umebayashi T, Sperry JS, Smith DD, Love DM. 2019. 'Pressure fatigue': the influence of sap pressure cycles on cavitation vulnerability in Acer negundo. Tree Physiolog 39:740−46 doi: 10.1093/treephys/tpy148
CrossRef Google Scholar
|
[34]
|
Knipfer T, Reyes C, Earles JM, Berry ZC, Johnson D, et al. 2019. Spatiotemporal coupling of vessel cavitation and discharge of stored xylem water in a tree sapling. Plant Physiology 179:1658−68 doi: 10.1104/pp.18.01303
CrossRef Google Scholar
|
[35]
|
Tyree MT, Yang S. 1990. Water-storage capacity of Thuja, Tsuga and Acer stems measured by dehydration isotherms. Planta 182:420−26 doi: 10.1007/BF02411394
CrossRef Google Scholar
|
[36]
|
Feng F, Losso A, Tyree M, Zhang S, Mayr S. 2021. Cavitation fatigue in conifers: a study on eight European species. Plant Physiology 186:1580−90 doi: 10.1093/plphys/kiab170
CrossRef Google Scholar
|
[37]
|
Herbette S, Cochard H. 2010. Calcium is a major determinant of xylem vulnerability to cavitation. Plant Physiology 153:1932−39 doi: 10.1104/pp.110.155200
CrossRef Google Scholar
|
[38]
|
Giday H, Fanourakis D, Kjaer KH, Fomsgaard IS, Ottosen CO. 2014. Threshold response of stomatal closing ability to leaf abscisic acid concentration during growth. ournal of Experimental Botany 65:4361−70 doi: 10.1093/jxb/eru216
CrossRef Google Scholar
|
[39]
|
Jalakas P, Takahashi Y, Waadt R, Schroeder JI, Merilo E. 2021. Molecular mechanisms of stomatal closure in response to rising vapour pressure deficit. New Phytologist 232:468−75 doi: 10.1111/nph.17592
CrossRef Google Scholar
|
[40]
|
Lawson T, Blatt MR. 2014. Stomatal size, speed, and responsiveness impact on photosynthesis and water use efficiency. Plant Physiology 164:1556−70 doi: 10.1104/pp.114.237107
CrossRef Google Scholar
|
[41]
|
Buckley TN, John GP, Scoffoni C, Sack L. 2017. The sites of evaporation within leaves. Plant Physiology 173:1763−82 doi: 10.1104/pp.16.01605
CrossRef Google Scholar
|
[42]
|
Buckley TN, Sack L, Gilbert ME. 2011. The role of bundle sheath extensions and life form in stomatal responses to leaf water status. Plant Physiology 156:962−73 doi: 10.1104/pp.111.175638
CrossRef Google Scholar
|
[43]
|
Buckley TN. 2005. The control of stomata by water balance. New Phytologist 168:275−92 doi: 10.1111/j.1469-8137.2005.01543.x
CrossRef Google Scholar
|
[44]
|
Comstock JP, Mencuccini MM. 1998. Control of stomatal conductance by leaf water potential in Hymenoclea salsola (T. & G.), a desert subshrub. Plant, Cell & Environment 21:1029−238 doi: 10.1046/j.1365-3040.1998.00353.x
CrossRef Google Scholar
|
[45]
|
McAdam SAM, Brodribb TJ. 2016. Linking turgor with ABA biosynthesis: implications for stomatal responses to vapor pressure deficit across land plants. Plant Physiology 171:2008−16 doi: 10.1104/pp.16.00380
CrossRef Google Scholar
|
[46]
|
Zhang J, Ding J, Ibrahim M, Jiao X, Song X, et al. 2021. Effects of the interaction between vapor-pressure deficit and potassium on the photosynthesis system of tomato seedlings under low temperature. Scientia Horticulturae 283:110089 doi: 10.1016/j.scienta.2021.110089
CrossRef Google Scholar
|
[47]
|
Monteith JL. 1995. A reinterpretation of stomatal responses to humidity. Plant, Cell & Environment 18:357−64 doi: 10.1111/j.1365-3040.1995.tb00371.x
CrossRef Google Scholar
|
[48]
|
Fanourakis D, Heuvelink E, Carvalho SMP. 2013. A comprehensive analysis of the physiological and anatomical components involved in higher water loss rates after leaf development at high humidity. Journal of Plant Physiology 170:890−98 doi: 10.1016/j.jplph.2013.01.013
CrossRef Google Scholar
|
[49]
|
Giday H, Kjaer KH, Fanourakis D, Ottosen CO. 2013. Smaller stomata require less severe leaf drying to close: a case study in Rosa hydrida. Journal of Plant Physiology 170:1309−16 doi: 10.1016/j.jplph.2013.04.007
CrossRef Google Scholar
|
[50]
|
Sussmilch FC, Brodribb TJ, McAdam SAM. 2017. Up-regulation of NCED3 and ABA biosynthesis occur within minutes of a decrease in leaf turgor but AHK1 is not required. Journal of Experimental Botany 68:2913−18 doi: 10.1093/jxb/erx124
CrossRef Google Scholar
|
[51]
|
Buckley TN. 2016. Stomatal responses to humidity: has the 'black box' finally been opened? Plant, Cell & Environment 39:482−84 doi: 10.1111/pce.12651
CrossRef Google Scholar
|
[52]
|
Ma Y, Szostkiewicz I, Korte A, Moes D, Yang Y, et al. 2009. Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 324:1064−68 doi: 10.1126/science.1172408
CrossRef Google Scholar
|
[53]
|
Park SY, Fung P, Nishimura N, Jensen DR, Fujii H, et al. 2009. Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324:1068−71 doi: 10.1126/science.1173041
CrossRef Google Scholar
|
[54]
|
Assmann SM, Snyder JA, Lee YRJ. 2000. ABA-deficient (aba1) and ABA-insensitive (abi1-1, abi2-1) mutants of Arabidopsis have a wild-type stomatal response to humidity. Plant, Cell & Environment 23:387−95 doi: 10.1046/j.1365-3040.2000.00551.x
CrossRef Google Scholar
|
[55]
|
Xie X, Wang Y, Williamson L, Holroyd GH, Tagliavia C, et al. 2006. The identification of genes involved in the stomatal response to reduced atmospheric relative humidity. Current Biology 16:882−87 doi: 10.1016/j.cub.2006.03.028
CrossRef Google Scholar
|
[56]
|
Bunce JA. 1997. Does transpiration control stomatal responses to water vapour pressure deficit? Plant, Cell & Environment 19:131−35 doi: 10.1046/j.1365-3040.1997.d01-3.x
CrossRef Google Scholar
|
[57]
|
Chater CCC, Oliver J, Casson S, Gray JE. 2014. Putting the brakes on: abscisic acid as a central environmental regulator of stomatal development. New Phytologist 202:376−91 doi: 10.1111/nph.12713
CrossRef Google Scholar
|
[58]
|
Tardieu F, Davies WJ. 1993. Integration of hydraulic and chemical signalling in the control of stomatal conductance and water status of droughted plants. Plant, Cell & Environment 16:341−49 doi: 10.1111/j.1365-3040.1993.tb00880.x
CrossRef Google Scholar
|
[59]
|
Aliniaeifard S, Malcolm Matamoros P, van Meeteren U. 2014. Stomatal malfunctioning under low VPD conditions: induced by alterations in stomatal morphology and leaf anatomy or in the ABA signaling? Physiologia Plantarum 152:688−99 doi: 10.1111/ppl.12216
CrossRef Google Scholar
|
[60]
|
Merilo E, Yarmolinsky D, Jalakas P, Parik H, Tulva I, et al. 2018. Stomatal VPD response: there is more to the story than ABA. Plant Physiology 176:851−64 doi: 10.1104/pp.17.00912
CrossRef Google Scholar
|
[61]
|
Carins Murphy MR, Jordan GJ, Brodribb TJ. 2014. Acclimation to humidity modifies the link between leaf size and the density of veins and stomata. Plant, Cell & Environment 37:124−31 doi: 10.1111/pce.12136
CrossRef Google Scholar
|
[62]
|
Flexas J, Scoffoni C, Gago J, Sack L. 2013. Leaf mesophyll conductance and leaf hydraulic conductance: an introduction to their measurement and coordination. Journal of Experimental Botany 64:3965−81 doi: 10.1093/jxb/ert319
CrossRef Google Scholar
|
[63]
|
Aliniaeifard S, van Meeteren U. 2016. Stomatal characteristics and desiccation response of leaves of cut chrysanthemum (Chrysanthemum morifolium) flowers grown at high air humidity. Scientia Horticulturae 205:84−89 doi: 10.1016/j.scienta.2016.04.025
CrossRef Google Scholar
|
[64]
|
Caine RS, Yin X, Sloan J, Harrison EL, Mohammed U, et al. 2019. Rice with reduced stomatal density conserves water and has improved drought tolerance under future climate conditions. New Phytologist 221:371−84 doi: 10.1111/nph.15344
CrossRef Google Scholar
|
[65]
|
Silva GS, Gavassi MA, Nogueira MA, Habermann G. 2018. Aluminum prevents stomatal conductance from responding to vapor pressure deficit in Citrus limonia. Environmental and Experimental Botany 155:662−71 doi: 10.1016/j.envexpbot.2018.08.017
CrossRef Google Scholar
|
[66]
|
Tomeo NJ, Rosenthal DM. 2017. Variable mesophyll conductance among soybean cultivars sets a tradeoff between photosynthesis and water-use-efficiency. Plant Physiology 174:241−57 doi: 10.1104/pp.16.01940
CrossRef Google Scholar
|
[67]
|
Wang X, Du T, Huang J, Peng S, Xiong D. 2018. Leaf hydraulic vulnerability triggers the decline in stomatal and mesophyll conductance during drought in rice. Journal of Experimental Botany 69:4033−45 doi: 10.1093/jxb/ery188
CrossRef Google Scholar
|
[68]
|
Lawlor DW, Tezara W. 2009. Causes of decreased photosynthetic rate and metabolic capacity in water-deficient leaf cells: a critical evaluation of mechanisms and integration of processes. Annals of Botany 103:561−79 doi: 10.1093/aob/mcn244
CrossRef Google Scholar
|
[69]
|
Valentini R, Epron D, de Angelis P, Matteucci G, Dreyer E. 1995. In situ estimation of net CO2 assimilation, photosynthetic electron flow and photorespiration in Turkey oak (Q. cerris L.) leaves: diurnal cycles under different levels of water supply. Plant, Cell & Environment 18:631−40 doi: 10.1111/j.1365-3040.1995.tb00564.x
CrossRef Google Scholar
|
[70]
|
Yang Y, Zhang Q, Huang G, Peng S, Li Y. 2020. Temperature response of photosynthesis and hydraulic conductance in rice and wheat. Plant, Cell & Environment 43:1437−51 doi: 10.1111/pce.13743
CrossRef Google Scholar
|
[71]
|
Shirke PA, Pathre UV. 2004. Influence of leaf-to-air vapour pressure deficit (VPD) on the biochemistry and physiology of photosynthesis in Prosopis juliflora. Journal of Experimental Botany 55:2111−20 doi: 10.1093/jxb/erh229
CrossRef Google Scholar
|
[72]
|
Evans JR, Kaldenhoff R, Genty B, Terashima I. 2009. Resistances along the CO2 diffusion pathway inside leaves. Journal of Experimental Botany 60:2235−48 doi: 10.1093/jxb/erp117
CrossRef Google Scholar
|
[73]
|
Du Q, Zhang D, Jiao X, Song X, Li J. 2018. Effects of atmospheric and soil water status on photosynthesis and growth in tomato. Plant, Soil and Environment 64:13−19 doi: 10.17221/701/2017-PSE
CrossRef Google Scholar
|
[74]
|
Bongi G, Loreto F. 1989. Gas-exchange properties of salt stressed olive (Olea europea L.) leaves. Plant Physiology 90:1408−16 doi: 10.1104/pp.90.4.1408
CrossRef Google Scholar
|
[75]
|
Warren CR. 2008. Soil water deficits decrease the internal conductance to CO2 transfer but atmospheric water deficits do not. Journal of Experimental Botany 59:327−34 doi: 10.1093/jxb/erm314
CrossRef Google Scholar
|
[76]
|
Perez-Martin A, Flexas J, Ribas-Carbó M, Bota J, Tomás M, et al. 2009. Interactive effects of soil water deficit and air vapour pressure deficit on mesophyll conductance to CO2 in Vitis vinifera and Olea europaea. Journal of Experimental Botany 60:2391−405 doi: 10.1093/jxb/erp145
CrossRef Google Scholar
|
[77]
|
Qiu CQ, Ethier G, Pepin S, Dubé P, Desjardins Y, et al. 2017. Persistent negative temperature response of mesophyll conductance in red raspberry (Rubus idaeus L.) leaves under both high and low vapour pressure deficits: a role for abscisic acid? Plant, Cell & Environment 40:1940−59 doi: 10.1111/pce.12997
CrossRef Google Scholar
|
[78]
|
Schwerbrock R, Leuschner C. 2016. Air humidity as key determinant of the morphogenesis and productivity of the rare temperate woodland fern Polystichum braunii. Plant Biology 18:649−57 doi: 10.1111/plb.12444
CrossRef Google Scholar
|
[79]
|
Sellin A, Rosenvald K, Õunapuu-Pikas E, Tullus A, Ostonen I, et al. 2015. Elevated air humidity affects hydraulic traits and tree size but not biomass allocation in young silver birches (Betula pendula). Frontiers in Plant Science 6:860 doi: 10.3389/fpls.2015.00860
CrossRef Google Scholar
|
[80]
|
Evans JR, von Caemmerer S. 1996. Carbon dioxide diffusion inside leaves. Plant Physiology 110:339−46 doi: 10.1104/pp.110.2.339
CrossRef Google Scholar
|
[81]
|
Perez-Martin A, Michelazzo C, Torres-Ruiz JM, Flexas J, Fernández JE, et al. 2014. Regulation of photosynthesis and stomatal and mesophyll conductance under water stress and recovery in olive trees: Correlation with gene expression of carbonic anhydrase and aquaporins. Journal of Experimental Botany 65:3143−56 doi: 10.1093/jxb/eru160
CrossRef Google Scholar
|
[82]
|
Rodriguez-Dominguez CM, Buckley TN, Egea G, De Cires A, Hernandez-Santana V, et al. 2016. Most stomatal closure in woody species under moderate drought can be explained by stomatal responses to leaf turgor. Plant, Cell & Environment 39:2014−26 doi: 10.1111/pce.12774
CrossRef Google Scholar
|
[83]
|
Brodribb TJ, McAdam SAM. 2017. Evolution of the stomatal regulation of plant water content. Plant Physiology 174:639−49 doi: 10.1104/pp.17.00078
CrossRef Google Scholar
|
[84]
|
Liu Y, Song J, Wang M, Li N, Niu C, et al. 2015. Coordination of xylem hydraulics and stomatal regulation in keeping the integrity of xylem water transport in shoots of two compound-leaved tree species. Tree Physiology 35:1333−42 doi: 10.1093/treephys/tpv061
CrossRef Google Scholar
|
[85]
|
Dewar R, Mauranen A, Mäkelä A, Hölttä T, Medlyn B, et al. 2018. New insights into the covariation of stomatal, mesophyll and hydraulic conductances from optimization models incorporating nonstomatal limitations to photosynthesis. New Phytologist 217:571−85 doi: 10.1111/nph.14848
CrossRef Google Scholar
|
[86]
|
Adachi S, Nakae T, Uchida M, Soda K, Takai T, et al. 2013. The mesophyll anatomy enhancing CO2 diffusion is a key trait for improving rice photosynthesis. Journal of Experimental Botany 64:1061−72 doi: 10.1093/jxb/ers382
CrossRef Google Scholar
|
[87]
|
Fini A, Loreto F, Tattini M, Giordano C, Ferrini F, et al. 2016. Mesophyll conductance plays a central role in leaf functioning of Oleaceae species exposed to contrasting sunlight irradiance. Physiologia Plantarum 157:54−68 doi: 10.1111/ppl.12401
CrossRef Google Scholar
|
[88]
|
Barbour MM, Bachmann S, Bansal U, Bariana H, Sharp P. 2016. Genetic control of mesophyll conductance in common wheat. New Phytologist 209:461−65 doi: 10.1111/nph.13628
CrossRef Google Scholar
|
[89]
|
Olsovska K, Kovar M, Brestic M, Zivcak M, Slamka P, et al. 2016. Genotypically identifying wheat mesophyll conductance regulation under progressive drought stress. Frontiers in Plant Science 7:1111 doi: 10.3389/fpls.2016.01111
CrossRef Google Scholar
|
[90]
|
Evans JR, Caemmerer SV, Setchell BA, Hudson GS. 1994. The relationship between CO2 transfer conductance and leaf anatomy in transgenic tobacco with a reduced content of rubisco. Functional Plant Biology 21:475−95 doi: 10.1071/pp9940475
CrossRef Google Scholar
|
[91]
|
Lu Z, Lu J, Pan Y, Lu P, Li X, et al. 2016. Anatomical variation of mesophyll conductance under potassium deficiency has a vital role in determining leaf photosynthesis. Plant, Cell & Environment 39:2428−39 doi: 10.1111/pce.12795
CrossRef Google Scholar
|
[92]
|
Schulze ED. 1986. Carbon dioxide and water vapor exchange in response to drought in the soil. Annual Review of Plant Physiology 37:247−74 doi: 10.1146/annurev.pp.37.060186.001335
CrossRef Google Scholar
|
[93]
|
Jiao X, Song X, Zhang D, Du Q, Li J. 2019. Coordination between vapor pressure deficit and CO2 on the regulation of photosynthesis and productivity in greenhouse tomato production. Scientific Reports 9:8700 doi: 10.1038/s41598-019-45232-w
CrossRef Google Scholar
|
[94]
|
Arve LE, Terfa MT, Gislerød HR, Olsen JE, Torre S. 2013. High relative air humidity and continuous light reduce stomata functionality by affecting the ABA regulation in rose leaves. Plant, Cell & Environment 36:382−92 doi: 10.1111/j.1365-3040.2012.02580.x
CrossRef Google Scholar
|
[95]
|
López J, Way DA, Sadok W. 2021. Systemic effects of rising atmospheric vapor pressure deficit on plant physiology and productivity. Global Change Biology 27:1704−20 doi: 10.1111/gcb.15548
CrossRef Google Scholar
|
[96]
|
Barber SA. 1962. A diffusion and mass-flow concept of soil nutrient availability. Soil Science 93:39−49 doi: 10.1097/00010694-196201000-00007
CrossRef Google Scholar
|
[97]
|
Cramer MD, Hoffmann V, Verboom GA. 2008. Nutrient availability moderates transpiration in Ehrharta calycina. New New Phytologist 179:1048−57 doi: 10.1111/j.1469-8137.2008.02510.x
CrossRef Google Scholar
|
[98]
|
Yang Z, Sinclair TR, Zhu M, Messina CD, Cooper M, et al. 2012. Temperature effect on transpiration response of maize plants to vapour pressure deficit. Environmental and Experimental Botany 78:157−62 doi: 10.1016/j.envexpbot.2011.12.034
CrossRef Google Scholar
|
[99]
|
Novák V, Vidovič J. 2003. Transpiration and nutrient uptake dynamics in maize (Zea mays L.). Ecological Modelling 166:99−107 doi: 10.1016/S0304-3800(03)00102-9
CrossRef Google Scholar
|
[100]
|
Cernusak LA, Winter K, Turner BL. 2009. Plant δ15N correlates with the transpiration efficiency of nitrogen acquisition in tropical trees. Plant Physiology 151:1667−76 doi: 10.1104/pp.109.145870
CrossRef Google Scholar
|
[101]
|
Shrestha RK, Engel K, Becker M. 2015. Effect of transpiration on iron uptake and translocation in lowland rice. Journal of Plant Nutrition and Soil Science 178:365−69 doi: 10.1002/jpln.201400361
CrossRef Google Scholar
|
[102]
|
Leuschner C. 2002. Air humidity as an ecological factor for woodland herbs: leaf water status, nutrient uptake, leaf anatomy, and productivity of eight species grown at low or high vpd levels. Flora - Morphology, Distribution, Functional Ecology of Plants 197:262−74 doi: 10.1078/0367-2530-00040
CrossRef Google Scholar
|
[103]
|
Parts K, Tedersoo L, Lõhmus K, Kupper P, Rosenvald K, et al. 2013. Increased air humidity and understory composition shape short root traits and the colonizing ectomycorrhizal fungal community in silver birch stands. Forest Ecology and Management 310:720−28 doi: 10.1016/j.foreco.2013.09.017
CrossRef Google Scholar
|
[104]
|
Rosenvald K, Tullus A, Ostonen I, Uri V, Kupper P, et al. 2014. The effect of elevated air humidity on young silver birch and hybrid aspen biomass allocation and accumulation – acclimation mechanisms and capacity. Forest Ecology and Management 330:252−60 doi: 10.1016/j.foreco.2014.07.016
CrossRef Google Scholar
|
[105]
|
Jiao X, Yu X, Yuan Y, Li J. 2022. Effects of vapor pressure deficit combined with different N levels on tomato seedling anatomy, photosynthetic performance, and N uptake. Plant Science 324:111448 doi: 10.1016/j.plantsci.2022.111448
CrossRef Google Scholar
|
[106]
|
Kupper P, Rohula G, Inno L, Ostonen I, Sellin A, et al. 2017. Impact of high daytime air humidity on nutrient uptake and night-time water flux in silver birch, a boreal forest tree species. Regional Environmental Change 17:2149−57 doi: 10.1007/s10113-016-1092-2
CrossRef Google Scholar
|
[107]
|
Zhang J, Jiao X, Du Q, Song X, Ding J, et al. 2021. Effects of vapor pressure deficit and potassium supply on root morphology, potassium uptake, and biomass allocation of tomato seedlings. Journal of Plant Growth Regulation 40:509−18 doi: 10.1007/s00344-020-10115-2
CrossRef Google Scholar
|
[108]
|
Lihavainen J, Keinänen M, Keski-Saari S, Kontunen-Soppela S, Sõber A, et al. 2016. Artificially decreased vapour pressure deficit in field conditions modifies foliar metabolite profiles in birch and aspen. Journal of Experimental Botany 67:4367−78 doi: 10.1093/jxb/erw219
CrossRef Google Scholar
|
[109]
|
Sinclair TR, Vallerani C, Shilling DG. 1995. Transpiration inhibition by stored xylem sap from well-watered maize plants. Plant, Cell & Environment 18:1441−45 doi: 10.1111/j.1365-3040.1995.tb00206.x
CrossRef Google Scholar
|
[110]
|
Keiser JR, Mullen RE. 1993. Calcium and relative humidity effects on soybean seed nutrition and seed quality. Crop Science 33:1345−49 doi: 10.2135/cropsci1993.0011183X003300060044x
CrossRef Google Scholar
|
[111]
|
McLaughlin SB, Wimmer R. 1999. Calcium physiology and terrestrial ecosystem process. New Phytologist 142:373−417 doi: 10.1046/j.1469-8137.1999.00420.x
CrossRef Google Scholar
|
[112]
|
Taylor MD, Locascio SJ. 2004. Blossom-end rot: a calcium deficiency. Journal of Plant Nutrition 27:123−39 doi: 10.1081/PLN-120027551
CrossRef Google Scholar
|
[113]
|
Ho LC, White PJ. 2005. A cellular hypothesis for the induction of blossom-end rot in tomato fruit. Annals of Botany 95:571−81 doi: 10.1093/aob/mci065
CrossRef Google Scholar
|
[114]
|
Li YL, Stanghellini C, Challa H. 2001. Effect of electrical conductivity and transpiration on production of greenhouse tomato (Lycopersicon esculentum L.). Scientia Horticulturae 88:11−29 doi: 10.1016/S0304-4238(00)00190-4
CrossRef Google Scholar
|
[115]
|
Fernández JE, Alcon F, Diaz-Espejo A, Hernandez-Santana V, Cuevas MV. 2020. Water use indicators and economic analysis for on-farm irrigation decision: a case study of a super high density olive tree orchard. Agricultural Water Management 237:106074 doi: 10.1016/j.agwat.2020.106074
CrossRef Google Scholar
|
[116]
|
Bunce JA. 2016. Variation among Soybean cultivars in mesophyll conductance and leaf water use efficiency. Plants 5:44 doi: 10.3390/plants5040044
CrossRef Google Scholar
|
[117]
|
Han J, Meng H, Wang S, Jiang C, Liu F, et al. 2016. Variability of mesophyll conductance and its relationship with water use efficiency in cotton leaves under drought pretreatment. Journal of Plant Physiology 194:61−71 doi: 10.1016/j.jplph.2016.03.014
CrossRef Google Scholar
|
[118]
|
Giuliani R, Koteyeva N, Voznesenskaya E, Evans MA, Cousins AB, et al. 2013. Coordination of leaf photosynthesis, transpiration, and structural traits in rice and wild relatives (Genus Oryza). Plant Physiology 162:1632−51 doi: 10.1104/pp.113.217497
CrossRef Google Scholar
|
[119]
|
Barbour MM, Warren CR, Farquhar GD, Forrester G, Brown H. 2010. Variability in mesophyll conductance between barley genotypes, and effects on transpiration efficiency and carbon isotope discrimination. Plant, Cell & Environment 33:1176−85 doi: 10.1111/j.1365-3040.2010.02138.x
CrossRef Google Scholar
|
[120]
|
Yu X, Zhang J, Zhang Y, Ma L, Jiao X, et al. 2023. Identification of optimal irrigation and fertilizer rates to balance yield, water and fertilizer productivity, and fruit quality in greenhouse tomatoes using TOPSIS. Scientia Horticulturae 311:111829 doi: 10.1016/j.scienta.2023.111829
CrossRef Google Scholar
|
[121]
|
He Z, Li M, Cai Z, Zhao R, Hong T, et al. 2021. Optimal irrigation and fertilizer amounts based on multi-level fuzzy comprehensive evaluation of yield, growth and fruit quality on cherry tomato. Agricultural Water Management 243:106360 doi: 10.1016/j.agwat.2020.106360
CrossRef Google Scholar
|
[122]
|
Leonardi C, Guichard S, Bertin N. 2000. High vapour pressure deficit influences growth, transpiration and quality of tomato fruits. Scientia Horticulturae 84:285−96 doi: 10.1016/S0304-4238(99)00127-2
CrossRef Google Scholar
|
[123]
|
Bertin N, Guichard S, Leonardi C, Longuenesse JJ, Langlois D, et al. 2000. Seasonal evolution of the quality of fresh glasshouse tomatoes under mediterranean conditions, as affected by air vapour pressure deficit and plant fruit load. Annals of Botany 85:741−50 doi: 10.1006/anbo.2000.1123
CrossRef Google Scholar
|
[124]
|
Agbna GHD, She D, Liu Z, Nazar AE, Shao GC, et al. 2017. Effects of deficit irrigation and biochar addition on the growth, yield, and quality of tomato. Scientia Horticulturae 222:90−101 doi: 10.1016/j.scienta.2017.05.004
CrossRef Google Scholar
|
[125]
|
Lu J, Shao G, Cui J, Wang X, Keabetswe L. 2019. Yield, fruit quality and water use efficiency of tomato for processing under regulated deficit irrigation: a meta-analysis. Agricultural Water Management 222:301−12 doi: 10.1016/j.agwat.2019.06.008
CrossRef Google Scholar
|
[126]
|
Chen J, Kang S, Du T, Guo P, Qiu R, et al. 2014. Modeling relations of tomato yield and fruit quality with water deficit at different growth stages under greenhouse condition. Agricultural Water Management 146:131−48 doi: 10.1016/j.agwat.2014.07.026
CrossRef Google Scholar
|
[127]
|
Chen J, Kang S, Du T, Qiu R, Guo P, et al. 2013. Quantitative response of greenhouse tomato yield and quality to water deficit at different growth stages. Agricultural Water Management 129:152−62 doi: 10.1016/j.agwat.2013.07.011
CrossRef Google Scholar
|
[128]
|
Wang F, Kang S, Du T, Li F, Qiu R, et al. 2011. Determination of comprehensive quality index for tomato and its response to different irrigation treatments. Agricultural Water Management 98:1228−38 doi: 10.1016/j.agwat.2011.03.004
CrossRef Google Scholar
|