[1]

Chen T, Tian M, Han Y. 2020. Hydrogen sulfide: a multi-tasking signal molecule in the regulation of oxidative stress responses. Journal of Experimental Botany 71:2862−69

doi: 10.1093/jxb/eraa093
[2]

Cao H, Liang Y, Zhang L, Liu Z, Liu D, et al. 2022. AtPRMT5-mediated AtLCD methylation improves Cd2+ tolerance via increased H2S production in Arabidopsis. Plant Physiology 190:2637−50

doi: 10.1093/plphys/kiac376
[3]

Li D, Limwachiranon J, Li L, Du R, Luo Z. 2016. Involvement of energy metabolism to chilling tolerance induced by hydrogen sulfide in cold-stored banana fruit. Food Chemistry 208:272−78

doi: 10.1016/j.foodchem.2016.03.113
[4]

Liu H, Wang J, Liu J, Liu T, Xue S. 2021. Hydrogen sulfide (H2S) signaling in plant development and stress responses. aBIOTECH 2:32−63

doi: 10.1007/s42994-021-00035-4
[5]

Riemenschneider A, Wegele R, Schmidt A, Papenbrock J. 2005. Isolation and characterization of a D-cysteine desulfhydrase protein from Arabidopsis thaliana. The FEBS journal 272:1291−304

doi: 10.1111/j.1742-4658.2005.04567.x
[6]

Hu K, Wang Q, Hu L, Gao S, Wu J, et al. 2014. Hydrogen sulfide prolongs postharvest storage of fresh-cut pears (Pyrus pyrifolia) by alleviation of oxidative damage and inhibition of fungal growth. PLoS ONE 9:e85524

doi: 10.1371/journal.pone.0085524
[7]

Luo Z, Li D, Du R, Mou W. 2015. Hydrogen sulfide alleviates chilling injury of banana fruit by enhanced antioxidant system and proline content. Scientia Horticulturae 183:144−51

doi: 10.1016/j.scienta.2014.12.021
[8]

Nagasawa T, Ishii T, Kumagai H, Yamada H. 1985. d-Cysteine desulfhydrase of Escherichia coli: purification and characterization. European Journal of Biochemistry 153:541−51

doi: 10.1111/j.1432-1033.1985.tb09335.x
[9]

Schmidt A. 1982. A cysteine desulfhydrase from spinach leaves specific for D-cysteine. Zeitschrift für Pflanzenphysiologie 107:301−12

doi: 10.1016/S0044-328X(82)80196-7
[10]

Zhang Q, Cai W, Ji T, Ye L, Lu Y, et al. 2020. WRKY13 enhances cadmium tolerance by promoting D-CYSTEINE DESULFHYDRASE and hydrogen sulfide production. Plant Physiology 183:345−57

doi: 10.1104/pp.19.01504
[11]

Zhao Y, Hu K, Yao G, Wang S, Peng X, et al. 2023. A D-cysteine desulfhydrase, SlDCD2, participates in tomato fruit ripening by modulating ROS homoeostasis and ethylene biosynthesis. Horticulture Research 10:uhad014

doi: 10.1093/hr/uhad014
[12]

Khan MN, AlZuaibr FM, Al-Huqail AA, Siddiqui MH, Ali HM, et al. 2018. Hydrogen sulfide-mediated activation of O-Acetylserine (Thiol) Lyase and L/D-Cysteine Desulfhydrase enhance dehydration tolerance in Eruca sativa Mill. International Journal of Molecular Sciences 19:3981

doi: 10.3390/ijms19123981
[13]

Rausch T, Wachter A. 2005. Sulfur metabolism: a versatile platform for launching defence operations. Trends in Plant Science 10:503−9

doi: 10.1016/j.tplants.2005.08.006
[14]

Bloem E, Haneklaus S, Schnug E. 2015. Milestones in plant sulfur research on sulfur-induced-resistance (SIR) in Europe. Frontiers in Plant Science 5:779

doi: 10.3389/fpls.2014.00779
[15]

Wu W, Zhang C, Chen L, Li G, Wang Q, et al. 2018. Inhibition of hydrogen sulfide and hypotaurine on Monilinia fructicola disease in peach fruit. Acta horticulturae257−66

doi: 10.17660/ActaHortic.2018.1194.38
[16]

Fu L, Hu K, Hu L, Li Y, Hu L, et al. 2014. An antifungal role of hydrogen sulfide on the postharvest pathogens Aspergillus niger and Penicillium italicum. PLoS ONE 9:e104206

doi: 10.1371/journal.pone.0104206
[17]

Duan B, Du H, Zhang W, Wang J, Cai Z, et al. 2022. An antifungal role of hydrogen sulfide on Botryosphaeria Dothidea and amino acid metabolism involved in disease resistance induced in postharvest kiwifruit. Frontiers in Plant Science 13:888647

doi: 10.3389/fpls.2022.888647
[18]

Shi H, Ye T, Han N, Bian H, Liu X, et al. 2015. Hydrogen sulfide regulates abiotic stress tolerance and biotic stress resistance in Arabidopsis. Journal of Integrative Plant Biology 57:628−40

doi: 10.1111/jipb.12302
[19]

Shi Z, Zhang Y, Maximova SN, Guiltinan MJ. 2013. TcNPR3 from Theobroma cacao functions as a repressor of the pathogen defense response. BMC Plant Biology 13:204

doi: 10.1186/1471-2229-13-204
[20]

Torres MA, Jones JDG, Dangl JL. 2006. Reactive oxygen species signaling in response to pathogens. Plant Physiology 141:373−78

doi: 10.1104/pp.106.079467
[21]

Hu C, Zeng Q, Tai L, Li B, Zhang P, et al. 2020. Interaction between TaNOX7 and TaCDPK13 contributes to plant fertility and drought tolerance by regulating ROS production. Journal of Agricultural and Food Chemistry 68:7333−47

doi: 10.1021/acs.jafc.0c02146
[22]

Xu Y, Charles MT, Luo Z, Mimee B, Tong Z, et al. 2019. Ultraviolet-C priming of strawberry leaves against subsequent Mycosphaerella fragariae infection involves the action of reactive oxygen species, plant hormones, and terpenes. Plant, Cell & Environment 42:815−31

doi: 10.1111/pce.13491
[23]

Rossi FR, Krapp AR, Bisaro F, Maiale SJ, Pieckenstain FL, et al. 2017. Reactive oxygen species generated in chloroplasts contribute to tobacco leaf infection by the necrotrophic fungus Botrytis cinerea. The Plant Journal 92:761−73

doi: 10.1111/tpj.13718
[24]

Wan R, Hou X, Wang X, Qu J, Singer SD, et al. 2015. Resistance evaluation of Chinese wild Vitis genotypes against Botrytis cinerea and different responses of resistant and susceptible hosts to the infection. Frontiers in Plant Science 6:854

doi: 10.3389/fpls.2015.00854
[25]

Asselbergh B, Curvers K, França SC, Audenaert K, Vuylsteke M, et al. 2007. Resistance to Botrytis cinerea in sitiens, an abscisic acid-deficient tomato mutant, involves timely production of hydrogen peroxide and cell wall modifications in the epidermis. Plant Physiology 144:1863−77

doi: 10.1104/pp.107.099226
[26]

Hu K, Peng X, Yao G, Zhou Z, Yang F, et al. 2021. Roles of a cysteine desulfhydrase LCD1 in regulating leaf senescence in tomato. International Journal of Molecular Sciences 22:13078

doi: 10.3390/ijms222313078
[27]

Saitou N, Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4:406−25

doi: 10.1093/oxfordjournals.molbev.a040454
[28]

Ma X, Zhang Q, Zhu Q, Liu W, Chen Y, et al. 2015. A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Molecular Plant 8:1274−84

doi: 10.1016/j.molp.2015.04.007
[29]

Liu W, Xie X, Ma X, Li J, Chen J, et al. 2015. DSDecode: a web-based tool for decoding of sequencing chromatograms for genotyping of targeted mutations. Molecular Plant 8:1431−33

doi: 10.1016/j.molp.2015.05.009
[30]

Hu Z, Shao S, Zheng C, Sun Z, Shi J, et al. 2018. Induction of systemic resistance in tomato against Botrytis cinerea by N-decanoyl-homoserine lactone via jasmonic acid signaling. Planta 247:1217−27

doi: 10.1007/s00425-018-2860-7
[31]

Ma Q, Liu Y, Fang H, Wang P, Ahammed GJ, et al. 2020. An essential role of mitochondrial α-ketoglutarate dehydrogenase E2 in the basal immune response against bacterial pathogens in tomato. Frontiers in Plant Science 11:579772

doi: 10.3389/fpls.2020.579772
[32]

Li T, Li Z, Hu K, Hu L, Chen X, et al. 2017. Hydrogen sulfide alleviates kiwifruit ripening and senescence by antagonizing effect of ethylene. HortScience 52:1556−62

doi: 10.21273/HORTSCI12261-17
[33]

Gupta AS, Heinen JL, Holaday AS, Burke JJ, Allen RD. 1993. Increased resistance to oxidative stress in transgenic plants that overexpress chloroplastic Cu/Zn superoxide dismutase. Proceedings of the National Academy of Sciences of the United States of America 90:1629−33

doi: 10.1073/pnas.90.4.1629
[34]

Aazami MA, Rasouli F, Ebrahimzadeh A. 2021. Oxidative damage, antioxidant mechanism and gene expression in tomato responding to salinity stress under in vitro conditions and application of iron and zinc oxide nanoparticles on callus induction and plant regeneration. BMC Plant Biology 21:597

doi: 10.1186/s12870-021-03379-7
[35]

Omidi M, Khandan-Mirkohi A, Kafi M, Zamani Z, Ajdanian L, et al. 2022. Biochemical and molecular responses of Rosa damascena mill. cv. Kashan to salicylic acid under salinity stress. BMC Plant Biology 22:373

doi: 10.1186/s12870-022-03754-y
[36]

Zhang H, Hu S, Zhang Z, Hu L, Jiang C, et al. 2011. Hydrogen sulfide acts as a regulator of flower senescence in plants. Postharvest Biology and Technology 60:251−57

doi: 10.1016/j.postharvbio.2011.01.006
[37]

Elstner EF, Heupel A. 1976. Inhibition of nitrite formation from hydroxylammoniumchloride: a simple assay for superoxide dismutase. Analytical Biochemistry 70:616−20

doi: 10.1016/0003-2697(76)90488-7
[38]

Lin Y, Fan L, Xia X, Wang Z, Yin Y, et al. 2019. Melatonin decreases resistance to postharvest green mold on citrus fruit by scavenging defense-related reactive oxygen species. Postharvest Biology and Technology 153:21−30

doi: 10.1016/j.postharvbio.2019.03.016
[39]

Song H, Zhou Z, Zhao D, Tang J, Li Y, et al. 2021. Storage property is positively correlated with antioxidant capacity in different sweet potato cultivars. Frontiers in Plant Science 12:696142

doi: 10.3389/fpls.2021.696142
[40]

Li R, Wang L, Li Y, Zhao R, Zhang Y, et al. 2020. Knockout of SlNPR1 enhances tomato plants resistance against Botrytis cinerea by modulating ROS homeostasis and JA/ET signaling pathways. Physiologia Plantarum 170:569−79

doi: 10.1111/ppl.13194
[41]

Trujillo M, Ichimura K, Casais C, Shirasu K. 2008. Negative regulation of PAMP-triggered immunity by an E3 ubiquitin ligase triplet in Arabidopsis. Current Biology 18:1396−401

doi: 10.1016/j.cub.2008.07.085
[42]

Sharma B, Taganna J. 2020. Genome-wide analysis of the U-box E3 ubiquitin ligase enzyme gene family in tomato. Scientific Reports 10:9581

doi: 10.1038/s41598-020-66553-1
[43]

Fu L, Wei Z, Hu K, Hu L, Li Y, et al. 2018. Hydrogen sulfide inhibits the growth of Escherichia coli through oxidative damage. Journal of Microbiology 56:238−45

doi: 10.1007/s12275-018-7537-1
[44]

Chi MH, Park SY, Kim S, Lee YH. 2009. A novel pathogenicity gene is required in the rice blast fungus to suppress the basal defenses of the host. PLoS Pathogens 5:e1000401

doi: 10.1371/journal.ppat.1000401
[45]

Li Z. 2015. Analysis of some enzymes activities of hydrogen sulfide metabolism in plants. Methods in Enzymology 555:253−69

doi: 10.1016/bs.mie.2014.11.035
[46]

Barna B, Györgyi B. 1992. Resistance of young versus old tobacco leaves to necrotrophs, fusaric acid, cell wall-degrading enzymes and autolysis of membrane lipids. Physiological and Molecular Plant Pathology 40:247−57

doi: 10.1016/0885-5765(92)90075-7
[47]

Taheri P, Kakooee T. 2017. Reactive oxygen species accumulation and homeostasis are involved in plant immunity to an opportunistic fungal pathogen. Journal of Plant Physiology 216:152−63

doi: 10.1016/j.jplph.2017.04.018
[48]

Tian S, Qin G, Li B. 2013. Reactive oxygen species involved in regulating fruit senescence and fungal pathogenicity. Plant Molecular Biology 82:593−602

doi: 10.1007/s11103-013-0035-2
[49]

Peng M, Kuc J. 1992. Peroxidase-generated hydrogen peroxide as a source of antifungal activity in vitro and on tobacco leaf disks. Phytopathology 82:696−99

doi: 10.1094/Phyto-82-696
[50]

Yao Y, Kan W, Su P, Zhu Y, Zhong W, et al. 2022. Hydrogen sulphide alleviates Fusarium Head Blight in wheat seedlings. PeerJ 10:e13078

doi: 10.7717/peerj.13078
[51]

Li S, Hu K, Hu L, Li Y, Jiang A, et al. 2014. Hydrogen sulfide alleviates postharvest senescence of broccoli by modulating antioxidant defense and senescence-related gene expression. Journal of Agricultural and Food Chemistry 62:1119−29

doi: 10.1021/jf4047122
[52]

Ge Y, Hu K, Wang S, Hu L, Chen X, et al. 2017. Hydrogen sulfide alleviates postharvest ripening and senescence of banana by antagonizing the effect of ethylene. PLoS ONE 12:e0180113

doi: 10.1371/journal.pone.0180113
[53]

Ni Z, Hu K, Song C, Ma R, Li Z, et al. 2016. Hydrogen sulfide alleviates postharvest senescence of grape by modulating the antioxidant defenses. Oxidative Medicine and Cellular Longevity 2016:4715651

doi: 10.1155/2016/4715651
[54]

Shu P, Zhang S, Li Y, Wang X, Yao L, et al. 2021. Over-expression of SlWRKY46 in tomato plants increases susceptibility to Botrytis cinerea by modulating ROS homeostasis and SA and JA signaling pathways. Plant Physiology and Biochemistry 166:1−9

doi: 10.1016/j.plaphy.2021.05.021
[55]

Govrin EM, Levine A. 2000. The hypersensitive response facilitates plant infection by the necrotrophic pathogen Botrytis cinerea. Current Biology 10:751−57

doi: 10.1016/S0960-9822(00)00560-1
[56]

Shadle GL, Wesley SV, Korth KL, Chen F, Lamb C, et al. 2003. Phenylpropanoid compounds and disease resistance in transgenic tobacco with altered expression of L-phenylalanine ammonia-lyase. Phytochemistry 64:153−61

doi: 10.1016/S0031-9422(03)00151-1