[1]

National Agricultural Statistics Service. 2022. Citrus Fruits 2022 Summary. United States Department of Agriculture (USDA). https://usda.library.cornell.edu/concern/publications/j9602060k

[2]

Halbert SE, Manjunath KL. 2004. Asian Citrus Psyllids (Sternorrhyncha psyllidae) and Greening Disease of Citrus: A Literature Review and Assessment of Risk in Florida. Florida Entomologist 87(3):330−53

doi: 10.1653/0015-4040(2004)087[0330:ACPSPA]2.0.CO;2
[3]

California Department of Food and Agriculture. 2022. Action Plan for Asian Citrus Psyllid and Huanglongbing (Citrus Greening) in California. CDFA. www.cdfa.ca.gov/citruscommittee/docs/ActionPlan.pdf.

[4]

USDA Animal and Plant Health Inspection Service. 2018. Interstate Movement of Citrus Nursery Stock for Areas Quarantined for Citrus Canker, Citrus Greening, and/or Asian Citrus Psyllid. USDA. www.aphis.usda.gov/plant_health/plant_pest_info/citrus/citrus-downloads/citrus-nursery-stock/citrus-nursery-stock-protocol-interstate-movement.pdf.

[5]

Tanny J, Cohen S, Teitel M. 2003. Screenhouse Microclimate and Ventilation: an Experimental Study. Biosystems Engineering 84(3):331−41

doi: 10.1016/S1537-5110(02)00288-X
[6]

Ingram DL, Buchanan DW. 1986. Critical high root-zone temperatures for container-grown citrus. Proceedings of the Florida State Horticultural Society 99:214−17

[7]

Crawford AJ, McLachlan DH, Hetherington AM, Franklin KA. 2012. High temperature exposure increases plant cooling capacity. Current Biology 22(10):R396−R397

doi: 10.1016/j.cub.2012.03.044
[8]

Ferrarezi RS, Wright AL, Boman BJ, Schumann AW, Gmitter FG, et al. 2017. Protected fresh grapefruit cultivation systems: Antipsyllid screen effects on plant growth and leaf transpiration, vapor pressure deficit, and nutrition. HortTechnology 27:666−74

doi: 10.21273/HORTTECH03789-17
[9]

Hatfield JL, Prueger JH. 2015. Temperature extremes: Effect on plant growth and development. Weather and Climate Extremes 10:4−10

doi: 10.1016/j.wace.2015.08.001
[10]

Falivene S, Goodwin I, Williams D, Boland AM. 2005. Open hydroponics: risks and opportunities. Stage 1: General principles and literature review. National Program for Sustainable Irrigation. Report. Land & Water Australia, Australia. www.arapahocitrus.com/files/OHS_Stage_Publications.pdf

[11]

Morgan KT, Schumann AW, Castle WS, Stover EW, Kadyampakeni D, et al. 2009. Citrus production systems to survive greening: Horticultural practices. Proceedings of the Florida State Horticultural Society 122:114−21

[12]

Raviv M, Lieth JH, Bar-Tal A. 2019. Soilless Culture: Theory and Practice. Second Edition. Cambridge: Academic Press. https://doi.org/10.1016/C2015-0-01470-8

[13]

Vashisth T, Chun C, Ozores Hampton M. 2020. Florida Citrus Nursery Trends and Strategies to Enhance Production of Field-Transplant Ready Citrus Plants. Horticulturae 6(1):8

doi: 10.3390/horticulturae6010008
[14]

Ouma G, Ouma G. 2005. Root confinement and irrigation frequency affect growth of "Rough lemon" (Citrus limon) seedlings. Fruits 60(3):202

doi: 10.1051/fruits:2005026
[15]

Girardi EA, Brandão AD, Coelho RD, do Couto HTZ, Buckeridge MS, et al. 2018. Regulated deficit irrigation benefits the production of container-grown citrus nursery trees. Trees 32:1751−66

doi: 10.1007/s00468-018-1748-2
[16]

Ferrarezi RS, Wright AL, Boman BJ, Schumann AW, Gmitter FG, et al. 2017. Protected fresh grapefruit cultivation systems: Antipsyllid screen effects on environmental variables inside enclosures. HortTechnology 27(5):675−81

doi: 10.21273/HORTTECH03790-17
[17]

Schumann AW, Singerman A, Wright AL, Ritenour M, Qureshi J, et al. 2022. 2022–2023 Florida Citrus Production Guide: Citrus under Protective Screen (CUPS) Production Systems: CPG Ch. 22, HS1304/CMG19, Rev. 4/2022. EDIS 2022 (CPG). https://doi.org/10.32473/edis-hs1304-2022.

[18]

Kadyampakeni DM, Morgan KT. 2020. Nutrition of Florida Citrus Trees, Third Edition: SL253/SS478, Rev. 3/2020. EDIS 2020(2

doi: 10.32473/edis-ss478-2020
[19]

Ferrarezi RS, Testezlaf R. 2017. Automated ebb-and-flow subirrigation for citrus liners production. I. Plant growth. Agricultural Water Management 192:45−57

doi: 10.1016/j.agwat.2017.06.016
[20]

Furlani PR, Zanetti M, Bataglia OC. 2009. Citrus nursery production in soiless culture. Acta Horticulturae 843:255−60

doi: 10.17660/ActaHortic.2009.843.33
[21]

Mazzini RB, Ribeiro RV, Pio RM. 2010. A simple and non-destructive model for individual leaf area estimation in citrus. Fruits 65(5):269−75

doi: 10.1051/fruits/2010022
[22]

Davies FS, Zalman G. 2008. Fertilization and growth of field-grown citrus nursery trees in Florida. HortTechnology 18(1):29−33

doi: 10.21273/HORTTECH.18.1.29
[23]

Valiantzas JD. 2006. Simplified versions for the Penman evaporation equation using routine weather data. Journal of Hydrology 331(3):690−702

doi: 10.1016/j.jhydrol.2006.06.012
[24]

Valiantzas JD. 2013. Simplified forms for the standardized FAO-56 Penman–Monteith reference evapotranspiration using limited weather data. Journal of Hydrology 505:13−23

doi: 10.1016/j.jhydrol.2013.09.005
[25]

Subedi A, Chávez JL. 2015. Crop Evapotranspiration (ET) Estimation Models: A review and discussion of the applicability and limitations of ET Methods. Journal of Agricultural Sciences 7(6):50−68

doi: 10.5539/jas.v7n6p50
[26]

Kitta E, Baille A, Katsoulas N, Rigakis N. 2014. Predicting reference evapotranspiration for screenhouse-grown crops. Agricultural Water Management 143:122−30

doi: 10.1016/j.agwat.2014.07.006
[27]

California Department of Water Resources. 2022. California Irrigation Management Information System. https://cimis.water.ca.gov/

[28]

Sager JC, Mc Farlane JC. 1997. Radiation. In Plant growth chamber handbook. Vol. 340. Ames: Iowa State University of Science and Technology. pp. 1−29.

[29]

Bird RE, Hulstrom RL, Lewis LJ. 1983. Terrestrial solar spectral data sets. Solar Energy 30(6):563−73

doi: 10.1016/0038-092X(83)90068-3
[30]

Beeson RC. 2005. Modeling irrigation requirements for landscape ornamentals. HortTechnology 15(1):18−22

doi: 10.21273/HORTTECH.15.1.0018
[31]

Beeson RC Jr. 2013. Modeling actual evapotranspiration of Ilex×’Nellie R. Stevens' during production from rooted cuttings to landscape size trees. Acta Horticulturae 990:321−26

doi: 10.17660/actahortic.2013.990.38
[32]

Piñeiro G, Perelman S, Guerschman JP, Paruelo JM. 2008. How to evaluate models: Observed vs. predicted or predicted vs. observed? Ecological Modelling 216(3–4):316−22

doi: 10.1016/j.ecolmodel.2008.05.006
[33]

Horticultural Standards Committee. 2014. American Standard for Nursery Stock. ANSI Z260.1-2004, AmericanHort, Washington DC. www.americanhort.org/education/american-nursery-stock-standards/

[34]

Solis C, Khachatryan H, Beeson R. 2016. Profitability of citrus tree greenhouse production systems in Florida: FE999/FE999. EDIS 2016(7):5

doi: 10.32473/edis-fe999-2016
[35]

Law RD, Crafts-Brandner SJ. 1999. Inhibition and acclimation of photosynthesis to heat stress is closely correlated with activation of ribulose-1,5-bisphosphate carboxylase/oxygenase. Plant Physiology 120(1):173−82

doi: 10.1104/pp.120.1.173
[36]

Jifon JL, Syvertsen JP. 2003. Moderate shade can increase net gas exchange and reduce photoinhibition in citrus leaves†. Tree Physiology 23(2):119−27

doi: 10.1093/treephys/23.2.119
[37]

Raveh E, Cohen S, Raz T, Yakir D, Grava A, et al. 2003. Increased growth of young citrus trees under reduced radiation load in a semi-arid climate. Journal of Experimental Botany 54(381):365−73

doi: 10.1093/jxb/erg009
[38]

Syvertsen JP. 1984. Light acclimation in citrus leaves. II. CO2 assimilation and light, water, and nitrogen use efficiency. Journal of the American Society for Horticultural Science 109(6):812−17

doi: 10.21273/jashs.109.6.812
[39]

İncesu M, Yeşiloğlu T, Çimen B, Yılmaz B. 2016. Effects of nursery shading on plant growth, chlorophyll content and PSII in "Lane Late" navel orange seedlings. Acta Horticulturae 1130:301−6

[40]

Horn HS. 1971. The adaptive geometry of trees. Princeton, NJ: Princeton University Press.

[41]

Niinemets Ü, Portsmuth A, Tena D, Tobias M, Matesanz S, et al. 2007. Do we underestimate the importance of leaf size in plant economics? Disproportional scaling of support costs within the spectrum of leaf physiognomy Annals of Botany 100(2):283−303

doi: 10.1093/aob/mcm107
[42]

Kleiman D, Aarssen LW. 2007. The leaf size/number trade-off in trees. Journal of Ecology 95(2):376−82

doi: 10.1111/j.1365-2745.2006.01205.x
[43]

Yang D, Li G, Sun S. 2008. The generality of leaf size versus number trade-off in temperate woody species. Annals of Botany 102(4):623−29

doi: 10.1093/aob/mcn135
[44]

Martínez F, Castillo S, Borrero C, Pérez S, Palencia P, et al. 2013. Effect of different soilless growing systems on the biological properties of growth media in strawberry. Scientia Horticulturae 150:59−64

doi: 10.1016/j.scienta.2012.10.016
[45]

Koohakan P, Ikeda H, Jeanaksorn T, Tojo M, Kusakari SI, et al. 2004. Evaluation of the indigenous microorganisms in soilless culture: occurrence and quantitative characteristics in the different growing systems. Scientia Horticulturae 101(1):179−88

doi: 10.1016/j.scienta.2003.09.012
[46]

de Boer W, Folman LB, Summerbell RC, Boddy L. 2005. Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiology Reviews 29(4):795−811

doi: 10.1016/j.femsre.2004.11.005
[47]

Allen RG. 2000. Using the FAO-56 dual crop coefficient method over an irrigated region as part of an evapotranspiration intercomparison study. Journal of Hydrology 229(1):27−41

doi: 10.1016/s0022-1694(99)00194-8
[48]

Grewal HS, Maheshwari B, Parks SE. 2011. Water and nutrient use efficiency of a low-cost hydroponic greenhouse for a cucumber crop: An Australian case study. Agricultural Water Management 98(5):841−46

doi: 10.1016/j.agwat.2010.12.010
[49]

Bilderback T, Boyer C, Chappell M, Fain G, Fare D, et al. 2013. Best management practices: Guide for producing nursery crops. Acworth, GA: Southern Nursery Association.

[50]

Prehn A, Owen J, Warren S, Bilderback T, Albano J. 2010. Comparison of water management in container-grown nursery crops using leaching fraction or weight-based on demand irrigation control. Journal of Environmental Horticulture 28(2):117−23

doi: 10.24266/0738-2898-28.2.117