[1]

Wang P. 2021. The main problems and countermeasures of seed industry development in China. Journal of Agricultural Science and Technology 23:7−16

doi: 10.13304/j.nykjdb.2021.0684
[2]

Zhou Y, Zhou S, Wang L, Wu D, Cheng H, et al. 2020. miR164c and miR168a regulate seed vigour in rice. Journal of Integrative Plant Biology 62:470−86

doi: 10.1111/jipb.12792
[3]

Jiang M. 2018. Research progress and prospect of seed vigour. China Seed Industry 37:15−18

doi: 10.19462/j.cnki.1671-895x.20180515.024
[4]

Yan Q. 2001. Seed Science. pp. 559. Beijing: China Agriculture Press. 105 pp.

[5]

Chen W, Chen Z, Lin H, Zhang S. 2021. Research advances of rapid and non-destructive identification of seed varieties by spectroscopic and imaging techniques. Science & Technology Information 19:5−9

doi: 10.16661/j.cnki.1672-3791.2009-5042-0793
[6]

Larios G, Nicolodelli G, Ribeiro M, Canassa T, Reis AR, et al. 2020. Soybean seed vigour discrimination by using infrared spectroscopy and machine learning algorithms. Analytical Methods 12:4303−09

doi: 10.1039/D0AY01238F
[7]

Gagliardi B, Marcos-Filho J. 2011. Relationship between germination and bell pepper seed structure assessed by the X-ray test. Scientia Agricola 68:411−16

doi: 10.1590/S0103-90162011000400004
[8]

Yin S, Yang D, Wang X, Gao S, Jiang L. 2015. Application study of near infrared spectroscopy technology in maize seed vigour detection. Modern Agricultural Science and Technology 44:20−21,23

doi: 10.3969/j.issn.1007-5739.2015.13.008
[9]

Xu S, Zhao G, Deng F, Qi H. 2016. Research on detection technology of rice seed vigor based on hyperspectral. Seed 35:34−40

doi: 10.16590/j.cnki.1001-4705.2016.04.034
[10]

ElMasry G, Mandour N, Wagner MH, Demilly D, Verdier J, et al. 2019. Utilization of computer vision and multispectral imaging techniques for classification of cowpea (Vigna unguiculata) seeds. Plant Methods 15:24

doi: 10.1186/s13007-019-0411-2
[11]

Li Z. 2016. Method research and system design of vegetable seed quality detection based on machine vision technology. Thesis. Anhui University. Anhui, China. pp. 52−56.

[12]

Tu K, Wen S, Cheng Y, Xu Y, Pan T, et al. 2022. A model for genuineness detection in genetically and phenotypically similar maize variety seeds based on hyperspectral imaging and machine learning. Plant Methods 18:81

doi: 10.1186/s13007-022-00918-7
[13]

de Jesus Martins Bianchini V, Mascarin GM, Silva LCAS, Arthur V, Carstensen JM, et al. 2021. Multispectral and X-ray images for characterization of Jatropha curcas L. seed quality. Plant Methods 17:9

doi: 10.1186/s13007-021-00709-6
[14]

de Medeiros AD, Bernardes RC, da Silva LJ, de Freitas BAL, Fernandes dos Santos Dias DC, et al. 2021. Deep learning-based approach using X-ray images for classifying Crambe abyssinica seed quality. Industrial Crops and Products 164:113378

doi: 10.1016/j.indcrop.2021.113378
[15]

Medeiros M, Cruz-Tirado JP, Lima AF, Netto J, Ribeiro A, Bassegio D, et al. 2022. Assessment oil composition and species discrimination of Brassicas seeds based on hyperspectral imaging and portable near infrared (NIR) spectroscopy tools and chemometrics. Journal of Food Composition Analysis 107:104403

doi: 10.1016/j.jfca.2022.104403
[16]

Yang H, Luo B, Zhang H, Zhou Y, Wang C. 2023. Recognition of maize seed variety purity based on hyperspectral imaging technology and IRIV algorithm. Journal of Jiangsu University (Natural Science Edition) 44:159−65

doi: 10.3969/j.issn.1671-7775.2023.02.005
[17]

Nansen C, Zhao G, Dakin N, Zhao C, Turner SR. 2015. Using hyperspectral imaging to determine germination of native Australian plant seeds. Journal of Photochemistry and Photobiology B: Biology 145:19−24

doi: 10.1016/j.jphotobiol.2015.02.015
[18]

Jean-Philippe SR, Labbé N, Damay J, Franklin JA, Hughes K. 2012. Effect of mercuric compounds on pine and sycamore germination and early survival. American Journal of Plant Sciences 3:150−58

doi: 10.4236/ajps.2012.31017
[19]

Zhang T, Xing Y, Yang L, Wang J, Sun Q. 2019. Wavelength variable selection methods for non-destructive detection of the viability of single wheat kernel based on hyperspectral imaging. Spectroscopy and Spectral Analysis 39:1556−62

doi: 10.3964/j.issn.1000-0593(2019)05-1556-07
[20]

Jia Z, Sun M, Ou C, Sun S, Mao C, et al. 2022. Single seed identification in three Medicago species via multispectral imaging combined with stacking ensemble learning. Sensors 22:7521

doi: 10.3390/s22197521
[21]

Wang X, Zhang H, Song R, He X, Mao P, et al. 2021. Non-destructive identification of naturally aged alfalfa seeds via multispectral imaging analysis. Sensors 21:5804

doi: 10.3390/s21175804
[22]

Zhang S, Zeng H, Ji W, Yi K, Yang S, et al. 2022. Non-destructive testing of alfalfa seed vigour based on multispectral imaging technology. Sensors 22:2760

doi: 10.3390/s22072760
[23]

Wang X, He X, Zhang H, Song R, Mao P, et al. 2022. Non-destructive identification of artificially aged alfalfa seeds using multispectral imaging analysis. Acta Prataculture Sinica 31:197−208

doi: 10.11686/cyxb2021198
[24]

Baek I, Kusumaningrum D, Kandpal LM, Lohumi S, Mo C, et al. 2019. Rapid measurement of soybean seed viability using kernel-based multispectral image analysis. Sensors 19:271

doi: 10.3390/s19020271
[25]

França-Silva F, Rego CHQ, Gomes-Junior FG, de Moraes MHD, de Medeiros AD, et al. 2020. Detection of Drechslera avenae (Eidam) Sharif [Helminthosporium avenae (Eidam)] in black oat seeds (Avena strigosa Schreb) using multispectral imaging. Sensors 20:3343

doi: 10.3390/s20123343
[26]

Weng H, Tian Y, Wu N, Li X, Yang B, et al. 2020. Development of a low-cost narrow band multispectral imaging system coupled with chemometric analysis for rapid detection of rice false smut in rice seed. Sensors 20:1209

doi: 10.3390/s20041209
[27]

Bartolić D, Mutavdžić D, Carstensen JM, Stanković S, Nikolić M, et al. 2022. Fluorescence spectroscopy and multispectral imaging for fingerprinting of aflatoxin-B-1 contaminated (Zea mays L. ) seeds: a preliminary study. Scientific Reports 12:4849

doi: 10.1038/s41598-022-08352-4
[28]

Liu W, He L, Xia Y, Ren L, Liu C, et al. 2022. Monitoring the growth of Fusarium graminearum in wheat kernels using multispectral imaging with chemometric methods. Analytical Methods 14:106−13

doi: 10.1039/D1AY01586A
[29]

ISTA. 2021. International Rules for Seed Testing. International Seed Testing Association (ISTA), Bassersdorf, Switzerland. www.seedtest.org/en/publications/international-rules-seed-testing.html

[30]

Ministry of Agriculture of the People's Republic of China. 2018. NY/T 3187-2018 Specification of Seed Testing for Forage and Turfgrass-Accelerated Aging for Vigour Test. China Agriculture Press, Beijing. www.sdtdata.com/fx/fcv1/tsLibCard/168575.html

[31]

Zhu Y, Wang M, Yan H, Mao C, Mao P. 2018. Influence of nitrogen and phosphorus fertilization on quality and germination potential of smooth bromegrass seed. International Journal of Agriculture & Biology 20:361−68

doi: 10.17957/IJAB/15.0499
[32]

Sun M, Wang S, Aierken D, Mao P. 2019. Effects of antioxidant priming on germination and seedling growth of aged seeds of smooth bromegrass. Acta Prataculturae Sinica 28:105−13

doi: 10.11686/cyxb2018788
[33]

Galletti PA, Carvalho M, Hirai WY, Brancaglioni VA, Arthur V, et al. 2020. Integrating optical imaging tools for rapid and non-invasive characterization of seed quality: tomato (Solanum lycopersicum L.) and carrot (Daucus carota L.) as study cases. Frontiers in Plant Science 11:577851

doi: 10.3389/fpls.2020.577851
[34]

Sudki JM, da Silva AC'PA, Arthur V, da Silva CB. 2021. Chlorophyll fluorescence as a new marker for peanut seed quality evaluation. South American Sciences 2:e21111

doi: 10.52755/sas.v2iedesp1.111
[35]

Hu X, Yang L, Zhang Z. 2020. Non-destructive identification of single hard seed via multispectral imaging analysis in six legume species. Plant Methods 16:116

doi: 10.1186/s13007-020-00659-5
[36]

Mao P, Han J, Wang P, Rong Y. 2001. Changes of physiology and biochemistry during seed development of smooth bromegrass. Chinese Journal of Grassland 23:27−32

[37]

Batista TB, Mastrangelo CB, de Medeiros AD, Petronilio AC, de Oliveira GRF, et al. 2022. A reliable method to recognize soybean seed maturation stages based on autofluorescence-spectral imaging combined with machine learning algorithms. Frontiers in Plant Science 13:914287

doi: 10.3389/fpls.2022.914287
[38]

Zinsmeister J, Lalanne D, Terrasson E, Chatelain E, Vandecasteele C, et al. 2016. ABI5 is a regulator of seed maturation and longevity in legumes. The Plant Cell 28:2735−54

doi: 10.1105/tpc.16.00470
[39]

Jalink H, van der Schoor R, Fandas A, van Pijlen JG, Bino RJ. 1998. Chlorophyll fluorescence of Brassica oleracea seeds as a non-destructive marker for seed maturity and seed performance. Seed Science Research 8:437−43

doi: 10.1017/S0960258500004402
[40]

Kenanoglu BB, Demir I, Jalink H. 2013. Chlorophyll fluorescence sorting method to improve quality of Capsicum pepper seed lots produced from different maturity fruits. HortScience 48:965−68

doi: 10.21273/HORTSCI.48.8.965
[41]

Robertson AR. 1990. Historical development of CIE recommended color difference equations. Color Research & Application 15:167−70

doi: 10.1002/col.5080150308
[42]

Li Z, Chen Y, Ye D, Guan C, Zou Y, et al. 2015. CIELAB colour space quantification-based evaluation of capsule development and aeed vigour in Nicotiana tabacum L. Chinese Tobacco Science 36:24−28

doi: 10.13496/j.issn.1007-5119.2015.04.004
[43]

Barlocco N, Vadell A, Ballesteros F, Galietta G, Cozzolino D. 2006. Predicting intramuscular fat, moisture and Warner-Bratzler shear force in pork muscle using near infrared reflectance spectroscopy. Animal Science 82:111−16

doi: 10.1079/ASC20055
[44]

Boelt B, Shrestha S, Salimi Z, Jorgensen JR, Nicolaisen M, et al. 2018. Multispectral imaging - a new tool in seed quality assessment? Seed Science Research 28:222−28

doi: 10.1017/S0960258518000235