[1]

Wilson EB. 1923. The physical basis of life. Science 57:277−86

doi: 10.1126/science.57.1471.277
[2]

Sevilem I, Yadav SR, Helariutta Y. 2015. Plasmodesmata: channels for intercellular signaling during plant growth and development. Methods in Molecular Biology 1217:3−24

doi: 10.1007/978-1-4939-1523-1_1
[3]

Vatén A, Dettmer J, Wu S, Stierhof YD, Miyashima S, et al. 2011. Callose biosynthesis regulates symplastic trafficking during root development. Developmental Cell 21:1144−55

doi: 10.1016/j.devcel.2011.10.006
[4]

Terauchi M, Nagasato C, Motomura T. 2015. Plasmodesmata of brown algae. Journal of Plant Research 128:7−15

doi: 10.1007/s10265-014-0677-4
[5]

Zambryski P, Crawford K. 2000. Plasmodesmata: gatekeepers for cell-to-cell transport of developmental signals in plants. Annual Review of Cell and Developmental Biology 16:393−421

doi: 10.1146/annurev.cellbio.16.1.393
[6]

Lucas WJ, Lee JY. 2004. Plasmodesmata as a supracellular control network in plants. Nature Reviews Molecular Cell Biology 5:712−26

doi: 10.1038/nrm1470
[7]

Brunkard JO, Runkel AM, Zambryski PC. 2015. The cytosol must flow: intercellular transport through plasmodesmata. Current Opinion in Cell Biology 35:13−20

doi: 10.1016/j.ceb.2015.03.003
[8]

Burch-Smith TM, Zambryski PC. 2012. Plasmodesmata paradigm shift: regulation from without versus within. Annual Review of Plant Biology 63:239−60

doi: 10.1146/annurev-arplant-042811-105453
[9]

Brunkard JO, Runkel AM, Zambryski PC. 2013. Plasmodesmata dynamics are coordinated by intracellular signaling pathways. Current Opinion in Plant Biology 16:614−20

doi: 10.1016/j.pbi.2013.07.007
[10]

Zhang Y, He P, Ma X, Yang Z, Pang C, et al. 2019. Auxin-mediated statolith production for root gravitropism. New Phytologist 224:761−74

doi: 10.1111/nph.15932
[11]

Sager R, Lee JY. 2014. Plasmodesmata in integrated cell signalling: insights from development and environmental signals and stresses. Journal of Experimental Botany 65:6337−58

doi: 10.1093/jxb/eru365
[12]

Furuta K, Lichtenberger R, Helariutta Y. 2012. The role of mobile small RNA species during root growth and development. Current Opinion in Cell Biology 24:211−16

doi: 10.1016/j.ceb.2011.12.005
[13]

Benkovics AH, Timmermans MCP. 2014. Developmental patterning by gradients of mobile small RNAs. Current Opinion in Genetics & Development 27:83−91

doi: 10.1016/j.gde.2014.04.004
[14]

Gallagher KL, Sozzani R, Lee CM. 2014. Intercellular protein movement: deciphering the language of development. Annual Review of Cell and Developmental Biology 30:207−33

doi: 10.1146/annurev-cellbio-100913-012915
[15]

Niehl A, Heinlein M. 2011. Cellular pathways for viral transport through plasmodesmata. Protoplasma 248:75−99

doi: 10.1007/s00709-010-0246-1
[16]

Wu S, Gallagher KL. 2012. Transcription factors on the move. Current Opinion in Plant Biology 15:645−51

doi: 10.1016/j.pbi.2012.09.010
[17]

Gömann J, Herrfurth C, Zienkiewicz A, Ischebeck T, Haslam TM, et al. 2021. Sphingolipid long-chain base hydroxylation influences plant growth and callose deposition in Physcomitrium patens. New Phytologist 231:297−314

doi: 10.1111/nph.17345
[18]

Xu M, Cho E, Burch-Smith TM, Zambryski PC. 2012. Plasmodesmata formation and cell-to-cell transport are reduced in decreased size exclusion limit 1 during embryogenesis in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 109:5098−103

doi: 10.1073/pnas.1202919109
[19]

Ehlers K, Kollmann R. 2001. Primary and secondary plasmodesmata: structure, origin, and functioning. Protoplasma 216:1−30

doi: 10.1007/BF02680127
[20]

Yadav SR, Yan D, Sevilem I, Helariutta Y. 2014. Plasmodesmata-mediated intercellular signaling during plant growth and development. Frontiers in Plant Science 5:44

doi: 10.3389/fpls.2014.00044
[21]

Jackson D. 2015. Plasmodesmata spread their influence. F1000Prime Reports 7:25

doi: 10.12703/p7-25
[22]

Wu S, Gallagher KL. 2011. Mobile protein signals in plant development. Current Opinion in Plant Biology 14:563−70

doi: 10.1016/j.pbi.2011.06.006
[23]

Kim JY. 2018. Symplasmic intercellular communication through plasmodesmata. Plants 7:23

doi: 10.3390/plants7010023
[24]

Kragler F. 2015. Analysis of the conductivity of plasmodesmata by microinjection. Methods in Molecular Biology 1217:173−84

doi: 10.1007/978-1-4939-1523-1_12
[25]

Christensen NM, Faulkner C, Oparka K. 2009. Evidence for unidirectional flow through plasmodesmata. Plant Physiology 150:96−104

doi: 10.1104/pp.109.137083
[26]

Lucas WJ, Bouché-Pillon S, Jackson DP, Nguyen L, Baker L, et al. 1995. Selective trafficking of KNOTTED1 homeodomain protein and its mRNA through plasmodesmata. Science 270:1980−83

doi: 10.1126/science.270.5244.1980
[27]

Xu XM, Wang J, Xuan Z, Goldshmidt A, Borrill PGM, et al. 2011. Chaperonins facilitate KNOTTED1 cell-to-cell trafficking and stem cell function. Science 333:1141−44

doi: 10.1126/science.1205727
[28]

Yadav RK, Perales M, Gruel J, Girke T, Jönsson H, et al. 2011. WUSCHEL protein movement mediates stem cell homeostasis in the Arabidopsis shoot apex. Genes & Development 25:2025−30

doi: 10.1101/gad.17258511
[29]

Daum G, Medzihradszky A, Suzaki T, Lohmann JU. 2014. A mechanistic framework for noncell autonomous stem cell induction in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 111:14619−24

doi: 10.1073/pnas.1406446111
[30]

Pi L, Aichinger E, van der Graaff E, Llavata-Peris CI, Weijers D, et al. 2015. Organizer-derived WOX5 signal maintains root Columella stem cells through chromatin-mediated repression of CDF4 expression. Developmental Cell 33:576−88

doi: 10.1016/j.devcel.2015.04.024
[31]

Kim JY, Yuan Z, Jackson D. 2003. Developmental regulation and significance of KNOX protein trafficking in Arabidopsis. Development 130:4351−62

doi: 10.1242/dev.00618
[32]

Kim JY, Rim Y, Wang J, Jackson D. 2005. A novel cell-to-cell trafficking assay indicates that the KNOX homeodomain is necessary and sufficient for intercellular protein and mRNA trafficking. Genes & Development 19:788−93

doi: 10.1101/gad.332805
[33]

Rim Y, Jung JH, Chu H, Cho WK, Kim SW, et al. 2009. A non-cell-autonomous mechanism for the control of plant architecture and epidermal differentiation involves intercellular trafficking of BREVIPEDICELLUS protein. Functional Plant Biology 36:280−89

doi: 10.1071/FP08243
[34]

Schlereth A, Möller B, Liu W, Kientz M, Flipse J, et al. 2010. MONOPTEROS controls embryonic root initiation by regulating a mobile transcription factor. Nature 464:913−16

doi: 10.1038/nature08836
[35]

Lu KJ, De Rybel B, van Mourik H, Weijers D. 2018. Regulation of intercellular TARGET OF MONOPTEROS 7 protein transport in the Arabidopsis root. Development 145:dev152892

doi: 10.1242/dev.152892
[36]

Rim Y, Huang L, Chu H, Han X, Cho WK, et al. 2011. Analysis of Arabidopsis transcription factor families revealed extensive capacity for cell-to-cell movement as well as discrete trafficking patterns. Molecules and Cells 32:519−26

doi: 10.1007/s10059-011-0135-2
[37]

Zhou J, Wang X, Lee JY, Lee JY. 2013. Cell-to-cell movement of two interacting AT-hook factors in Arabidopsis root vascular tissue patterning. The Plant cell 25:187−201

doi: 10.1105/tpc.112.102210
[38]

Long Y, Goedhart J, Schneijderberg M, Terpstra I, Shimotohno A, et al. 2015. SCARECROW-LIKE23 and SCARECROW jointly specify endodermal cell fate but distinctly control SHORT-ROOT movement. The Plant Journal 84:773−84

doi: 10.1111/tpj.13038
[39]

Corbesier L, Vincent C, Jang S, Fornara F, Fan Q, et al. 2007. FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 316:1030−33

doi: 10.1126/science.1141752
[40]

Jaeger KE, Wigge PA. 2007. FT protein acts as a long-range signal in Arabidopsis. Current Biology 17:1050−54

doi: 10.1016/j.cub.2007.05.008
[41]

Chen X, Yao Q, Gao X, Jiang C, Harberd NP, et al. 2016. Shoot-to-root mobile transcription factor HY5 coordinates plant carbon and nitrogen acquisition. Current Biology 26:640−46

doi: 10.1016/j.cub.2015.12.066
[42]

Harries P, Ding B. 2011. Cellular factors in plant virus movement: at the leading edge of macromolecular trafficking in plants. Virology 411:237−43

doi: 10.1016/j.virol.2010.12.021
[43]

Wu S, Gallagher KL. 2013. Intact microtubules are required for the intercellular movement of the SHORT-ROOT transcription factor. The Plant Journal 74:148−59

doi: 10.1111/tpj.12112
[44]

Koizumi K, Wu S, MacRae-Crerar A, Gallagher KL. 2011. An essential protein that interacts with endosomes and promotes movement of the SHORT-ROOT transcription factor. Current Biology 21:1559−64

doi: 10.1016/j.cub.2011.08.013
[45]

Carrington JC, Ambros V. 2003. Role of microRNAs in plant and animal development. Science 301:336−38

doi: 10.1126/science.1085242
[46]

Schramke V, Luciano P, Brevet V, Guillot S, Corda Y, et al. 2004. RPA regulates telomerase action by providing Est1p access to chromosome ends. Nature Genetics 36:46−54

doi: 10.1038/ng1284
[47]

Khraiwesh B, Arif MA, Seumel GI, Ossowski S, Weigel D, et al. 2010. Transcriptional control of gene expression by microRNAs. Cell 140:111−22

doi: 10.1016/j.cell.2009.12.023
[48]

Loreti E, Perata P. 2022. Mobile plant microRNAs allow communication within and between organisms. New Phytologist 235:2176−82

doi: 10.1111/nph.18360
[49]

Chen X, Rechavi O. 2022. Plant and animal small RNA communications between cells and organisms. Nature Reviews Molecular Cell Biology 23:185−203

doi: 10.1038/s41580-021-00425-y
[50]

Brioudes F, Jay F, Sarazin A, Grentzinger T, Devers EA, et al. 2021. HASTY, the Arabidopsis EXPORTIN5 ortholog, regulates cell-to-cell and vascular microRNA movement. The EMBO Journal 40:e107455

doi: 10.15252/embj.2020107455
[51]

Lin SI, Chiang SF, Lin WY, Chen JW, Tseng CY, et al. 2008. Regulatory network of microRNA399 and PHO2 by systemic signaling. Plant Physiology 147:732−46

doi: 10.1104/pp.108.116269
[52]

Huen AK, Rodriguez-Medina C, Ho AYY, Atkins CA, Smith PMC. 2017. Long-distance movement of phosphate starvation-responsive microRNAs in Arabidopsis. Plant Biology 19:643−49

doi: 10.1111/plb.12568
[53]

Tsikou D, Yan Z, Holt DB, Abel NB, Reid DE, et al. 2018. Systemic control of legume susceptibility to rhizobial infection by a mobile microRNA. Science 362:233−36

doi: 10.1126/science.aat6907
[54]

Buhtz A, Pieritz J, Springer F, Kehr J. 2010. Phloem small RNAs, nutrient stress responses, and systemic mobility. BMC Plant Biology 10:64

doi: 10.1186/1471-2229-10-64
[55]

Martin A, Adam H, Díaz-Mendoza M, Żurczak M, González-Schain ND, et al. 2009. Graft-transmissible induction of potato tuberization by the microRNA miR172. Development 136:2873−81

doi: 10.1242/dev.031658
[56]

Wu G, Park MY, Conway SR, Wang JW, Weigel D, et al. 2009. The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell 138:750−59

doi: 10.1016/j.cell.2009.06.031
[57]

Eviatar-Ribak T, Shalit-Kaneh A, Chappell-Maor L, Amsellem Z, Eshed Y, et al. 2013. A cytokinin-activating enzyme promotes tuber formation in tomato. Current Biology 23:1057−64

doi: 10.1016/j.cub.2013.04.061
[58]

Carlsbecker A, Lee JY, Roberts CJ, Dettmer J, Lehesranta S, et al. 2010. Cell signalling by microRNA165/6 directs gene dose-dependent root cell fate. Nature 465:316−21

doi: 10.1038/nature08977
[59]

Knauer S, Holt AL, Rubio-Somoza I, Tucker EJ, Hinze A, et al. 2013. A protodermal miR394 signal defines a region of stem cell competence in the Arabidopsis shoot meristem. Developmental Cell 24:125−32

doi: 10.1016/j.devcel.2012.12.009
[60]

Lu KJ, Huang NC, Liu YS, Lu CA, Yu TS. 2012. Long-distance movement of Arabidopsis FLOWERING LOCUS T RNA participates in systemic floral regulation. RNA Biology 9:653−62

doi: 10.4161/rna.19965
[61]

Notaguchi M, Wolf S, Lucas WJ. 2012. Phloem-mobile Aux/IAA transcripts target to the root tip and modify root architecture. Journal of Integrative Plant Biology 54:760−72

doi: 10.1111/j.1744-7909.2012.01155.x
[62]

Xoconostle-Cázares B, Xiang Y, Ruiz-Medrano R, Wang HL, Monzer J, et al. 1999. Plant paralog to viral movement protein that potentiates transport of mRNA into the phloem. Science 283:94−98

doi: 10.1126/science.283.5398.94
[63]

Doering-Saad C, Newbury HJ, Couldridge CE, Bale JS, Pritchard J. 2006. A phloem-enriched cDNA library from Ricinus: insights into phloem function. Journal of Experimental Botany 57:3183−93

doi: 10.1093/jxb/erl082
[64]

Kanehira A, Yamada K, Iwaya T, Tsuwamoto R, Kasai A, et al. 2010. Apple phloem cells contain some mRNAs transported over long distances. Tree Genetics & Genomes 6:635−42

doi: 10.1007/s11295-010-0279-9
[65]

Kim M, Canio W, Kessler S, Sinha N. 2001. Developmental changes due to long-distance movement of a homeobox fusion transcript in tomato. Science 293:287−89

doi: 10.1126/science.1059805
[66]

Luo KR, Huang NC, Yu TS. 2018. Selective targeting of mobile mRNAs to plasmodesmata for cell-to-cell movement. Plant Physiology 177:604−14

doi: 10.1104/pp.18.00107
[67]

Thieme CJ, Rojas-Triana M, Stecyk E, Schudoma C, Zhang W, et al. 2015. Endogenous Arabidopsis messenger RNAs transported to distant tissues. Nature Plants 1:15025

doi: 10.1038/nplants.2015.25
[68]

Yang Y, Mao L, Jittayasothorn Y, Kang Y, Jiao C, et al. 2015. Messenger RNA exchange between scions and rootstocks in grafted grapevines. BMC Plant Biology 15:251

doi: 10.1186/s12870-015-0626-y
[69]

Notaguchi M, Higashiyama T, Suzuki T. 2015. Identification of mRNAs that move over long distances using an RNA-seq analysis of Arabidopsis/Nicotiana benthamiana heterografts. Plant and Cell Physiology 56:311−21

doi: 10.1093/pcp/pcu210
[70]

Zhang Z, Zheng Y, Ham BK, Chen J, Yoshida A, et al. 2016. Vascular-mediated signalling involved in early phosphate stress response in plants. Nature Plants 2:16033

doi: 10.1038/nplants.2016.33
[71]

Xia C, Zheng Y, Huang J, Zhou X, Li R, et al. 2018. Elucidation of the mechanisms of long-distance mRNA movement in a Nicotiana benthamiana/tomato heterograft system. Plant Physiology 177:745−58

doi: 10.1104/pp.17.01836
[72]

Liu L, Chen X. 2018. Intercellular and systemic trafficking of RNAs in plants. Nature Plants 4:869−78

doi: 10.1038/s41477-018-0288-5
[73]

Petricka JJ, Winter CM, Benfey PN. 2012. Control of Arabidopsis root development. Annual Review of Plant Biology 63:563−90

doi: 10.1146/annurev-arplant-042811-105501
[74]

Helariutta Y, Fukaki H, Wysocka-Diller J, Nakajima K, Jung J, et al. 2000. The SHORT-ROOT gene controls radial patterning of the Arabidopsis root through radial signaling. Cell 101:555−67

doi: 10.1016/S0092-8674(00)80865-X
[75]

Cui H, Levesque MP, Vernoux T, Jung JW, Paquette AJ, et al. 2007. An evolutionarily conserved mechanism delimiting SHR movement defines a single layer of endodermis in plants. Science 316:421−25

doi: 10.1126/science.1139531
[76]

Levesque MP, Vernoux T, Busch W, Cui H, Wang JY, et al. 2006. Whole-genome analysis of the SHORT-ROOT developmental pathway in Arabidopsis. PLoS Biology 4:e143

doi: 10.1371/journal.pbio.0040143
[77]

Sozzani R, Cui H, Moreno-Risueno MA, Busch W, Van Norman JM, et al. 2010. Spatiotemporal regulation of cell-cycle genes by SHORTROOT links patterning and growth. Nature 466:128−32

doi: 10.1038/nature09143
[78]

Nakajima K, Sena G, Nawy T, Benfey PN. 2001. Intercellular movement of the putative transcription factor SHR in root patterning. Nature 413:307−11

doi: 10.1038/35095061
[79]

Gallagher KL, Paquette AJ, Nakajima K, Benfey PN. 2004. Mechanisms regulating SHORT-ROOT intercellular movement. Current Biology 14:1847−51

doi: 10.1016/j.cub.2004.09.081
[80]

Wu S, Lee CM, Hayashi T, Price S, Divol F, et al. 2014. A plausible mechanism, based upon SHORT-ROOT movement, for regulating the number of cortex cell layers in roots. Proceedings of the National Academy of Sciences of the United States of America 111:16184−89

doi: 10.1073/pnas.1407371111
[81]

Geldner N. 2013. The endodermis. Annual Review of Plant Biology 64:531−58

doi: 10.1146/annurev-arplant-050312-120050
[82]

Yu Q, Li P, Liang N, Wang H, Xu M, et al. 2017. Cell-fate specification in Arabidopsis roots requires coordinative action of lineage instruction and positional reprogramming. Plant Physiology 175:816−27

doi: 10.1104/pp.17.00814
[83]

Li P, Yu Q, Gu X, Xu C, Qi S, et al. 2018. Construction of a functional casparian strip in non-endodermal lineages is orchestrated by two parallel signaling systems in Arabidopsis thaliana. Current Biology 28:2777−2286.E2

doi: 10.1016/j.cub.2018.07.028
[84]

Di Ruocco G, Bertolotti G, Pacifici E, Polverari L, Tsiantis M, et al. 2018. Differential spatial distribution of miR165/6 determines variability in plant root anatomy. Development 145:dev153858

doi: 10.1242/dev.153858
[85]

Hashimoto K, Miyashima S, Sato-Nara K, Yamada T, Nakajima K. 2018. Functionally diversified members of the MIR165/6 gene family regulate ovule morphogenesis in Arabidopsis thaliana. Plant and Cell Physiology 59:1017−26

doi: 10.1093/pcp/pcy042
[86]

Slewinski TL, Baker RF, Stubert A, Braun DM. 2012. Tie-dyed2 encodes a callose synthase that functions in vein development and affects symplastic trafficking within the phloem of maize leaves. Plant Physiology 160:1540−50

doi: 10.1104/pp.112.202473
[87]

Hoffman G, McEvoy PB. 1985. Mechanical limitations on feeding by meadow spittlebugs Philaenus spumarius (Homoptera: Cercopidae) on wild and cultivated host plants. Ecological Entomology 10:415−26

doi: 10.1111/j.1365-2311.1985.tb00739.x
[88]

Yang C, Gao Y, Gao S, Yu G, Xiong C, et al. 2015. Transcriptome profile analysis of cell proliferation molecular processes during multicellular trichome formation induced by tomato Wov gene in tobacco. BMC Genetics 16:868

doi: 10.1186/s12864-015-2099-7
[89]

Balkunde R, Bouyer D, Hulskamp M. 2011. Nuclear trapping by GL3 controls intercellular transport and redistribution of TTG1 protein in Arabidopsis. Development 138:5039−48

doi: 10.1242/dev.072454
[90]

Wester K, Digiuni S, Geier F, Timmer J, Fleck C, et al. 2009. Functional diversity of R3 single-repeat genes in trichome development. Development 136:1487−96

doi: 10.1242/dev.021733
[91]

Kang YH, Song SK, Schiefelbein J, Lee MM. 2013. Nuclear trapping controls the position-dependent localization of CAPRICE in the root epidermis of Arabidopsis. Plant Physiology 163:193−204

doi: 10.1104/pp.113.221028
[92]

Cnops G, Wang X, Linstead P, Montagu MV, Van Lijsebettens M, et al. 2000. TORNADO1 and TORNADO2 are required for the specification of radial and circumferential pattern in the Arabidopsis root. Development 127:3385−94

doi: 10.1242/dev.127.15.3385
[93]

Kwak SH, Song SK, Lee MM, Schiefelbein J. 2015. TORNADO1 regulates root epidermal patterning through the WEREWOLF pathway in Arabidopsis thaliana. Plant Signaling & Behavior 10:e1103407

doi: 10.1080/15592324.2015.1103407
[94]

Fan Y, Lin S, Li T, Shi F, Shan G, et al. 2022. The plasmodesmata-Located β-1, 3-Glucanase enzyme PdBG4 regulates trichomes growth in Arabidopsis thaliana. Cells 11:2856

doi: 10.3390/cells11182856
[95]

Pillitteri LJ, Torii KU. 2012. Mechanisms of stomatal development. Annual Review of Plant Biology 63:591−614

doi: 10.1146/annurev-arplant-042811-105451
[96]

Guseman JM, Lee JS, Bogenschutz NL, Peterson KM, Virata RE, et al. 2010. Dysregulation of cell-to-cell connectivity and stomatal patterning by loss-of-function mutation in Arabidopsis CHORUS (GLUCAN SYNTHASE-LIKE 8). Development 137:1731−41

doi: 10.1242/dev.049197
[97]

Raissig MT, Matos JL, Anleu Gil MX, Kornfeld A, Bettadapur A, et al. 2017. Mobile MUTE specifies subsidiary cells to build physiologically improved grass stomata. Science 355:1215−18

doi: 10.1126/science.aal3254
[98]

Bilska A, Sowiński P. 2010. Closure of plasmodesmata in maize (Zea mays) at low temperature: a new mechanism for inhibition of photosynthesis. Annals of Botany 106:675−86

doi: 10.1093/aob/mcq169
[99]

Wu J, Sun W, Sun C, Xu C, Li S, et al. 2022. Cold stress induces malformed tomato fruits by breaking the feedback loops of stem cell regulation in floral meristem. New Phytologist 237:2268−83

doi: 10.1111/nph.18699
[100]

Xie B, Wang X, Zhu M, Zhang Z, Hong Z. 2011. CalS7 encodes a callose synthase responsible for callose deposition in the phloem. The Plant Journal 65:1−14

doi: 10.1111/j.1365-313X.2010.04399.x
[101]

Cui W, Lee JY. 2016. Arabidopsis callose synthases CalS1/8 regulate plasmodesmal permeability during stress. Nature Plants 2:16034

doi: 10.1038/nplants.2016.34
[102]

Rinne PLH, van den Boogaard R, Mensink MGJ, Kopperud C, Kormelink R, et al. 2005. Tobacco plants respond to the constitutive expression of the tospovirus movement protein NSM with a heat-reversible sealing of plasmodesmata that impairs development. The Plant Journal 43:688−707

doi: 10.1111/j.1365-313X.2005.02489.x
[103]

Liu J, Liu Y, Wang S, Cui Y, Yan D. 2022. Heat stress reduces root meristem size via induction of plasmodesmal callose accumulation inhibiting phloem unloading in Arabidopsis. International Journal of Molecular Sciences 23:2063

doi: 10.3390/ijms23042063
[104]

Sivaguru M, Fujiwara T, Šamaj J, Baluška F, Yang Z, et al. 2000. Aluminum-induced 1→3-beta-D-glucan inhibits cell-to-cell trafficking of molecules through plasmodesmata. A new mechanism of aluminum toxicity in plants. Plant Physiology 124:991−1006

doi: 10.1104/pp.124.3.991
[105]

Ueki S, Citovsky V. 2002. The systemic movement of a tobamovirus is inhibited by a cadmium-ion-induced glycine-rich protein. Nature Cell Biology 4:478−86

doi: 10.1038/ncb806
[106]

Ueki S, Citovsky V. 2005. Identification of an interactor of cadmium ion-induced glycine-rich protein involved in regulation of callose levels in plant vasculature. Proceedings of the National Academy of Sciences of the United States of America 102:12089−12094

doi: 10.1073/pnas.0505927102
[107]

O'Lexy R, Kasai K, Clark N, Fujiwara T, Sozzani R, et al. 2018. Exposure to heavy metal stress triggers changes in plasmodesmatal permeability via deposition and breakdown of callose. Journal of Experimental Botany 69:3715−28

doi: 10.1093/jxb/ery171
[108]

Faulkner C, Petutschnig E, Benitez-Alfonso Y, Beck M, Robatzek S, et al. 2013. LYM2-dependent chitin perception limits molecular flux via plasmodesmata. Proceedings of the National Academy of Sciences of the United States of America 110:9166−70

doi: 10.1073/pnas.1203458110
[109]

Wang X, Sager R, Cui W, Zhang C, Lu H, et al. 2013. Salicylic acid regulates Plasmodesmata closure during innate immune responses in Arabidopsis. The Plant Cell 25:2315−29

doi: 10.1105/tpc.113.110676
[110]

Ding B, Haudenshield JS, Hull RJ, Wolf S, Beachy RN, et al. 1992. Secondary plasmodesmata are specific sites of localization of the tobacco mosaic virus movement protein in transgenic tobacco plants. The Plant Cell 4:915−28

doi: 10.1105/tpc.4.8.915
[111]

Wang H, Cao S, Li T, Zhang L, Yao J, et al. 2021. Classification and expression analysis of cucumber (Cucumis sativus L.) callose synthase (CalS) family genes and localization of CsCalS4, a protein involved in pollen development. Biotechnology and Biotechnological Equipment 35:1992−2004

doi: 10.1080/13102818.2022.2038670
[112]

Parr R, Gomez-Jimenez MC. 2020. Spatio–temporal immunolocalization of extensin protein and hemicellulose polysaccharides during olive fruit abscission. Planta 252:32

doi: 10.1007/s00425-020-03403-4
[113]

Zhang J, Liu N, Yan A, Sun T, Yao G, et al. 2022. Callose deposited at soybean sieve element inhibits long-distance transport of Soybean mosaic virus. AMB Express 12:66

doi: 10.1186/s13568-022-01402-0
[114]

Rinne PLH, Kaikuranta PM, van der Schoot C. 2001. The shoot apical meristem restores its symplasmic organization during chilling-induced release from dormancy. The Plant Journal 26:249−64

doi: 10.1046/j.1365-313X.2001.01022.x
[115]

Iswanto ABB, Vu MH, Pike S, Lee J, Kang H, et al. 2022. Pathogen effectors: what do they do at plasmodesmata? Molecular Plant Pathology 23:795−804

doi: 10.1111/mpp.13142
[116]

Mbiza NIT, Hu Z, Zhang H, Zhang Y, Luo X, et al. 2022. GhCalS5 is involved in cotton response to aphid attack through mediating callose formation. Frontiers in Plant Science 13:892630

doi: 10.3389/fpls.2022.892630
[117]

Niu Q, Zhang P, Su S, Jiang B, Liu X, et al. 2022. Characterization and expression analyses of callose synthase enzyme (Cals) family genes in maize (Zea mays L.). Biochemical Genetics 60:351−69

doi: 10.1007/s10528-021-10103-5
[118]

Rinne PLH, Welling A, Vahala J, Ripel L, Ruonala R, et al. 2011. Chilling of dormant buds hyperinduces FLOWERING LOCUS T and recruits GA-inducible 1, 3-β-glucanases to reopen signal conduits and release dormancy in Populus. The Plant Cell 23:130−46

doi: 10.1105/tpc.110.081307
[119]

Tylewicz S, Petterle A, Marttila S, Miskolczi P, Azeez A, et al. 2018. Photoperiodic control of seasonal growth is mediated by ABA acting on cell-cell communication. Science 360:212−15

doi: 10.1126/science.aan8576
[120]

Leubner-Metzger G, Meins F Jr. 2000. Sense transformation reveals a novel role for class I β-1, 3-glucanase in tobacco seed germination. The Plant Journal 23:215−21

doi: 10.1046/j.1365-313x.2000.00773.x
[121]

Wu S, O'Lexy R, Xu M, Sang Y, Chen X, et al. 2016. Symplastic signaling instructs cell division, cell expansion, and cell polarity in the ground tissue of Arabidopsis thaliana roots. Proceedings of the National Academy of Sciences of the United States of America 113:11621−26

doi: 10.1073/pnas.1610358113
[122]

Barratt DHP, Kölling K, Graf A, Pike M, Calder G, et al. 2011. Callose synthase GSL7 is necessary for normal phloem transport and inflorescence growth in Arabidopsis. Plant Physiology 155:328−41

doi: 10.1104/pp.110.166330
[123]

De Storme N, De Schrijver J, Van Criekinge W, Wewer V, Dörmann P, et al. 2013. GLUCAN SYNTHASE-LIKE8 and STEROL METHYLTRANSFERASE2 are required for ploidy consistency of the sexual reproduction system in Arabidopsis. The Plant Cell 25:387−403

doi: 10.1105/tpc.112.106278
[124]

Sevilem I, Miyashima S, Helariutta Y. 2013. Cell-to-cell communication via plasmodesmata in vascular plants. Cell Adhesion & Migration 7:27−32

doi: 10.4161/cam.22126
[125]

Zuo J, Niu QW, Chua NH. 2000. Technical advance: An estrogen receptor-based transactivator XVE mediates highly inducible gene expression in transgenic plants. The Plant Journal 24:265−73

doi: 10.1046/j.1365-313x.2000.00868.x
[126]

Benitez-Alfonso Y, Faulkner C, Pendle A, Miyashima S, Helariutta Y, et al. 2013. Symplastic intercellular connectivity regulates lateral root patterning. Developmental Cell 26:136−47

doi: 10.1016/j.devcel.2013.06.010
[127]

van den Berg C, Willemsen V, Hage W, Weisbeek P, Scheres B. 1995. Cell fate in the Arabidopsis root meristem determined by directional signalling. Nature 378:62−65

doi: 10.1038/378062a0
[128]

Liu Y, Xu M, Liang N, Zheng Y, Yu Q, et al. 2017. Symplastic communication spatially directs local auxin biosynthesis to maintain root stem cell niche in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 114:4005−10

doi: 10.1073/pnas.1616387114
[129]

Li M, Wang M, Lin Q, Wang M, Niu X, et al. 2022. Symplastic communication in the root cap directs auxin distribution to modulate root development. Journal of Integrative Plant Biology 64:859−70

doi: 10.1111/jipb.13237
[130]

Chambaud C, Cookson SJ, Ollat N, Bayer E, Brocard L. 2022. A correlative light electron microscopy approach reveals plasmodesmata ultrastructure at the graft interface. Plant Physiology 188:44−55

doi: 10.1093/plphys/kiab485
[131]

Band LR. 2021. Auxin fluxes through plasmodesmata. New Phytologist 231:1686−92

doi: 10.1111/nph.17517
[132]

Botha CEJ, Murugan N. 2021. Changes in structure and dimension of plasmodesmata in the phloem loading pathway in Tecoma capensis (Bignoniaceae) - locating the polymer trap. South African Journal of Botany 140:76−86

doi: 10.1016/j.sajb.2021.03.032
[133]

Ross-Elliott TJ, Jensen KH, Haaning KS, Wager BM, Knoblauch J, et al. 2017. Phloem unloading in Arabidopsis roots is convective and regulated by the phloem-pole pericycle. eLife 6:e24125

doi: 10.7554/eLife.24125
[134]

Holdaway-Clarke TL, Walker NA, Hepler PK, Overall RL. 1999. Physiological elevations in cytoplasmic free calcium by cold or ion injection result in transient closure of higher plant plasmodesmata. Planta 210:329−35

doi: 10.1007/PL00008141
[135]

Stonebloom S, Brunkard JO, Cheung AC, Jiang K, Feldman L, et al. 2012. Redox states of plastids and mitochondria differentially regulate intercellular transport via plasmodesmata. Plant Physiology 158:190−99

doi: 10.1104/pp.111.186130
[136]

Waigmann E, Chen MH, Bachmaier R, Ghoshroy S, Citovsky V. 2000. Regulation of plasmodesmal transport by phosphorylation of tobacco mosaic virus cell-to-cell movement protein. The EMBO Journal 19:4875−84

doi: 10.1093/emboj/19.18.4875
[137]

Huang X, Zhang Q, Wang G, Guo X, Li Z. 2019. Medical image super-resolution based on the generative adversarial network. Proceedings of 2019 Chinese Intelligent Systems Conference. pp. 243–53. https://link.springer.com/chapter/10.1007/978-981-32-9686-2_29

[138]

Linh NM, Scarpella E. 2022. Leaf vein patterning is regulated by the aperture of plasmodesmata intercellular channels. PLoS Biology 20:e3001781

doi: 10.1371/journal.pbio.3001781
[139]

Kameoka H, Dun EA, Lopez-Obando M, Brewer PB, de Saint Germain A, et al. 2016. Phloem transport of the receptor DWARF14 protein is required for full function of strigolactones. Plant Physiology 172:1844−52

doi: 10.1104/pp.16.01212
[140]

Kawade K, Horiguchi G, Usami T, Hirai MY, Tsukaya H. 2013. ANGUSTIFOLIA3 signaling coordinates proliferation between clonally distinct cells in leaves. Current Biology 23:788−92

doi: 10.1016/j.cub.2013.03.044
[141]

Mähönen AP, Ten Tusscher K, Siligato R, Smetana O, Díaz-Triviño S, et al. 2014. PLETHORA gradient formation mechanism separates auxin responses. Nature 515:125−29

doi: 10.1038/nature13663
[142]

Galinha C, Hofhuis H, Luijten M, Willemsen V, Blilou I, et al. 2007. PLETHORA proteins as dose-dependent master regulators of Arabidopsis root development. Nature 449:1053−57

doi: 10.1038/nature06206
[143]

Spiegelman Z, Ham BK, Zhang Z, Toal TW, Brady SM, et al. 2015. A tomato phloem-mobile protein regulates the shoot-to-root ratio by mediating the auxin response in distant organs. The Plant Journal 83:853−63

doi: 10.1111/tpj.12932
[144]

Tsukagoshi H, Busch W, Benfey PN. 2010. Transcriptional regulation of ROS controls transition from proliferation to differentiation in the root. Cell 143:606−16

doi: 10.1016/j.cell.2010.10.020
[145]

Kühn C, Barker L, Bürkle L, Frommer WB. 1999. Update on sucrose transport in higher plants. Journal of Experimental Botany 50:935−53

doi: 10.1093/jxb/50.Special_Issue.935
[146]

Ruiz-Medrano R, Xoconostle-Cázares B, Lucas WJ. 1999. Phloem long-distance transport of CmNACP mRNA: implications for supracellular regulation in plants. Development 126:4405−19

doi: 10.1242/dev.126.20.4405
[147]

Banerjee AK, Lin T, Hannapel DJ. 2009. Untranslated regions of a mobile transcript mediate RNA metabolism. Plant Physiology 151:1831−43

doi: 10.1104/pp.109.144428
[148]

Mahajan A, Bhogale S, Kang IH, Hannapel DJ, Banerjee AK. 2012. The mRNA of a Knotted1-like transcription factor of potato is phloem mobile. Plant Molecular Biology 79:595−608

doi: 10.1007/s11103-012-9931-0
[149]

Zhang H, Yu P, Zhao J, Jiang H, Wang H, et al. 2018. Expression of tomato prosystemin gene in Arabidopsis reveals systemic translocation of its mRNA and confers necrotrophic fungal resistance. New Phytologist 217:799−812

doi: 10.1111/nph.14858
[150]

Roney JK, Khatibi PA, Westwood JH. 2007. Cross-species translocation of mRNA from host plants into the parasitic plant dodder. Plant Physiology 143:1037−43

doi: 10.1104/pp.106.088369
[151]

David-Schwartz R, Runo S, Townsley B, Machuka J, Sinha N. 2008. Long-distance transport of mRNA via parenchyma cells and phloem across the host-parasite junction in Cuscuta. New Phytologist 179:1133−41

doi: 10.1111/j.1469-8137.2008.02540.x
[152]

Huang NC, Jane WN, Chen J, Yu TS. 2012. Arabidopsis thaliana CENTRORADIALIS homologue (ATC) acts systemically to inhibit floral initiation in Arabidopsis. The Plant Journal 72:175−84

doi: 10.1111/j.1365-313X.2012.05076.x
[153]

Yang HW, Yu TS. 2010. Arabidopsis floral regulators FVE and AGL24 are phloem-mobile RNAs. Botanical Studies 51:17−26

[154]

Chitwood DH, Nogueira FTS, Howell MD, Montgomery TA, Carrington JC, et al. 2009. Pattern formation via small RNA mobility. Genes & Development 23:549−54

doi: 10.1101/gad.1770009
[155]

Baldrich P, San Segundo B. 2016. MicroRNAs in rice innate immunity. Rice 9:6

doi: 10.1186/s12284-016-0078-5
[156]

Pant BD, Buhtz A, Kehr J, Scheible WR. 2008. MicroRNA399 is a long-distance signal for the regulation of plant phosphate homeostasis. The Plant Journal 53:731−38

doi: 10.1111/j.1365-313X.2007.03363.x