[1]

Garaguso I, Nardini M. 2015. Polyphenols content phenolics profile and antioxidant activity of organic red wines produced without sulfur dioxide/sulfites addition in comparison to conventional red wines. Food Chemistry 179:336−42

doi: 10.1016/j.foodchem.2015.01.144
[2]

Wang YR, Luo RM, Wang SL. 2022. Water distribution and key aroma compounds in the process of beef roasting. Frontiers in Nutrition 9:978622

doi: 10.3389/fnut.2022.978622
[3]

Styger G, Prior B, Bauer FF. 2011. Wine flavor and aroma. Journal of Industrial Microbiology & Biotechnology 38(9):1145

doi: 10.1007/s10295-011-1018-4
[4]

García M, Aleixandre M, Gutiérrez J, Horrillo MC. 2006. Electronic nose for wine discrimination. Sensors and Actuators B - Chemical 113:911−16

doi: 10.1016/j.snb.2005.03.078
[5]

Aleixandre M, Santos JP, Sayago I, Cabellos JM, Arroyo T, et al. 2015. A wireless and portable electronic nose to differentiate musts of different ripeness degree and grape varieties. Sensors 15:8429−43

doi: 10.3390/s150408429
[6]

Keyzers RA, Boss PK. 2010. Changes in the volatile compound production of fermentations made from musts with increasing grape content. Journal of Agricultural and Food Chemistry 58:1153−64

doi: 10.1021/jf9023646
[7]

Forde CG, Cox A, Williams ER, Boss PK. 2011. Associations between the sensory attributes and volatile composition of Cabernet Sauvignon wines and the volatile composition of the grapes used for their production. Journal of Agricultural and Food Chemistry 59:2573−83

doi: 10.1021/jf103584u
[8]

Sáenz-Navajas MP, Avizcuri JM, Ballester J, Fernández-Zurbano P, Ferreira V, et al. 2015. Sensory-active compounds influencing wine experts' and consumers' perception of red wine intrinsic quality. LWT - Food Science And Technology 60:400−11

doi: 10.1016/j.lwt.2014.09.026
[9]

Tempere S, Pérès S, Espinoza AF, Darriet P, Giraud-Héraud E, et al. 2019. Consumer preferences for different red wine styles and repeated exposure effects. Food Quality and Preference 73:110−16

doi: 10.1016/j.foodqual.2018.12.009
[10]

Zhang X, Wang K, Gu X, Sun X, Jin G, et al. 2022. Flavor Chemical Profiles of Cabernet Sauvignon Wines: Six Vintages from 2013 to 2018 from the Eastern Foothills of the Ningxia Helan Mountains in China. Foods 11(1):22

doi: 10.3390/foods11010022
[11]

Marigliano LE, Yu R, Torres N, Medina-Plaza C, Oberholster A, et al. 2023. Overhead photoselective shade films mitigate effects of climate change by arresting flavonoid and aroma composition degradation in wine. Frontiers in Plant Science 14:1085939

doi: 10.3389/fpls.2023.1085939
[12]

Polásková P, Herszage J, Ebeler SE. 2008. Wine flavor: chemistry in a glass. Chemical Society Reviews 37:2478−89

doi: 10.1039/b714455p
[13]

Parker M, Barker A, Black CA, Hixson J, Williamson P, et al. 2019. Don’t miss the marc: phenolic-free glycosides from white grape marc increase flavor of wine. Australian Journal of Grape Wine Research 25:212−23

doi: 10.1111/ajgw.12390
[14]

Antalick G, Šuklje K, Blackman JW, Meeks C, Deloire A, et al. 2015. Influence of grape composition on red wine ester profile: Comparison between cabernet sauvignon and shiraz cultivars from Australian warm climate. Journal of Agricultural and Food Chemistry 63:4664−72

doi: 10.1021/acs.jafc.5b00966
[15]

Yang Y, Jin GJ, Wang XJ, Kong CL, Liu JB, et al. 2019. Chemical profiles and aroma contribution of terpene compounds in Meili (Vitis vinifera L.) grape and wine. Food Chemistry 284:155−61

doi: 10.1016/j.foodchem.2019.01.106
[16]

Delgado Cuzmar P, Salgado E, Ribalta-Pizarro C, Olaeta JA, López E, et al. 2018. Phenolic composition and sensory characteristics of Cabernet Sauvignon wines: effect of water stress and harvest date. International Journal of Food Science and Technology 53(7):1726−35

doi: 10.1111/ijfs.13757
[17]

Fretz CB, Luisier JL, Tominaga, T, Amadò R. 2005. 3-mercaptohexanol: An aroma impact compound of Petite Arvine wine. American Journal of Enology and Viticulture 56(4):407−10

doi: 10.5344/ajev.2005.56.4.407
[18]

Liang Z, Zhang P, Zeng X, Fang Z. 2021. The art of flavored wine: Tradition and future. Trends in Food Science and Technology 116:130−45

doi: 10.1016/j.jpgs.2021.07.020
[19]

Biagi M, Bertelli AAE. 2015. Wine alcohol and pills:What future for the French paradox? Life Sciences 131:19−22

doi: 10.1016/j.lfs.2015.02.024
[20]

Liu G, Xu S, Wang X, Jin Q, Xu X, et al. 2016. Analysis of the volatile components of tea seed oil (Camellia sinensis O. Ktze) from China using HS-SPME-GC/MS. International Journal of Food Science And Technology 51:2591−602

doi: 10.1111/ijfs.13244
[21]

Saha B, Longo R, Torley P, Saliba A, Schmidtke L. 2018. SPME method optimized by Box-Behnken design for impact odorants in reduced alcohol wines. Foods 7(8):127

doi: 10.3390/foods7080127
[22]

Liu YQ, Liu HX, Lin WL, Xue YZ, Liu MQ, et al. 2022. SPME-GC–MS combined with chemometrics to assess the impact of fermentation time on the components, flavor, and function of Laoxianghuang. Frontiers in Nutrition 10:3389

doi: 10.3389/fnut.2022.915776
[23]

Fan X, Liu G, Qiao Y, Zhang Y, Leng C, et al. 2019. Characterization of volatile compounds by SPME-GC-MS during the ripening of Kedong Sufu a typical Chinese traditional bacteria-fermented soybean product. Journal of Food Science 84:2441−48

doi: 10.1111/1750-3841.14760
[24]

Capone S, Tufariello M, Francioso L, Montagna G, Casino F, et al. 2013. Aroma analysis by GC/MS and electronic nose dedicated to Negroamaro and Primitivo typical Italian Apulian wines. Sensors and Actuators B: Chemical 179:259−69

doi: 10.1016/j.snb.2012.10.142
[25]

Tan JZ, Xu J. 2020. Applications of electronic nose (e-nose) and electronic tongue (e-tongue) in food quality-related properties determination: A review. Artificial Intelligence in Agriculture 4:104−15

doi: 10.1016/j.aiia.2020.06.003
[26]

Di Rosa AR, Leone F, Cheli F, Chiofalo V. 2017. Fusion of electronic nose electronic tongue and computer vision for animal source food authentication and quality assessment-A review. Journal of Food Engineering 210:62−75

doi: 10.1016/j.jfoodeng.2017.04.024
[27]

Shi H, Zhang M, Adhikari B. 2018. Advances of electronic nose and its application in fresh foods: A review. Critical Reviews in Food Science and Nutrition 58(16):2700−10

doi: 10.1080/10408398.2017.1327419
[28]

Jiang H, Zhang M, Bhandari B, Adhikari B. 2018. Application of electronic tongue for fresh foods quality evaluation: a review. Food Reviews International 34:746−69

doi: 10.1080/87559129.2018.1424184
[29]

López de Lerma MDLN, Bellincontro A, García-Martínez T, Mencarelli F, Moreno JJ. 2013. Feasibility of an electronic nose to differentiate commercial Spanish wines elaborated from the same grape variety. Food Research International 51:790−796

doi: 10.1016/j.foodres.2013.01.036
[30]

Han F, Zhang D, Aheto JH, Feng F, Duan T. 2020. Integration of a low-cost electronic nose and a voltammetric electronic tongue for red wines identification. Food Science & Nutrition 8:4330−39

doi: 10.1002/fsn3.1730
[31]

Xiang X, Wang Y, Yu Z, Ma M, Zhu ZH, et al. 2019. Non-destructive characterization of egg odor and fertilization status by SPME/GC-MS coupled with electronic nose. Journal of the Science of Food and Agriculture 99:3264−75

doi: 10.1002/jsfa.9539
[32]

Pérez-Navarro J, Izquierdo-Cañas PM, Mena-Morales A, Martínez-Gascueña J, Chacón-Vozmediano JL, et al. 2019. First chemical and sensory characterization of Moribel and Tinto Fragoso wines using HPLC-DAD-ESI-MS/MS GC-MS, and Napping® techniques: comparison with Tempranillo. Journal of the Science of Food and Agriculture 99:2108−23

doi: 10.1002/jsfa.9403
[33]

Campos MP, Sousa R, Pereira AC, Reis MS. 2017. Advanced predictive methods for wine age prediction: Part II - A comparison study of multiblock regression approaches. Talanta 171:132−42

doi: 10.1016/j.talanta.2017.04.064
[34]

Astray G, Mejuto JC, Martínez-Martínez V, Nevares I, Alamo-Sanza M, et al. 2019. Prediction models to control aging time in red wine. Molecules 24:826

doi: 10.3390/molecules24050826
[35]

Lopez de Lerma N, Bellincontro A, Mencarelli F, Moreno J, Peinado RA. 2012. Use of electronic nose validated by GC-MS, to establish the optimum off-vine dehydration time of wine grapes. Food Chemistry 130:447−52

doi: 10.1016/j.foodchem.2011.07.058
[36]

Ziółkowska A, Wąsowicz E, Jeleń HH. 2016. Differentiation of wines according to grape variety and geographical origin based on volatiles profiling using SPME-MS and SPME-GC/MS methods. Food Chemistry 213:714−720

doi: 10.1016/j.foodchem.2016.06.120
[37]

Picard M, de Revel G, Marchand S, Marchand S. 2017. First identification of three p-menthane lactones and their potential precursor menthofuran, in red wines. Food Chemistry 217:294−302

doi: 10.1016/j.foodchem.2016.08.070
[38]

Shao Y, Xu F, Sun X, Bao J, Beta T. 2014. Phenolic acids anthocyanins, and antioxidant capacity in rice (Oryza sativa L.) grains at four stages of development after flowering. Food Chemistry 143:90−96

doi: 10.1016/j.foodchem.2013.07.042
[39]

Xia Q, Wang L, Xu C, Mei J, Li Y. 2017. Effects of germination and high hydrostatic pressure processing on mineral elements amino acids and antioxidants in vitro bioaccessibility, as well as starch digestibility in brown rice (Oryza sativa L.). Food Chemistry 214:533−42

doi: 10.1016/j.foodchem.2016.07.114
[40]

Men H, Shi Y, Fu S, Jiao Y, Qiao Y, et al. 2017. Mining feature of data fusion in the classification of beer flavor information using E-tongue and E-nose. Sensors 17:1656

doi: 10.3390/s17071656
[41]

Cao Y, Wu Z, Weng P. 2020. Comparison of bayberry fermented wine aroma from different cultivars by GC-MS combined with electronic nose analysis. Food Science and Nutrition 8:830−40

doi: 10.1002/fsn3.1343
[42]

Karimali D, Kosma I, Badeka A. 2020. Varietal classification of red wine samples from four native Greek grape varieties based on volatile compound analysis color parameters and phenolic composition. European Food Research and Technology 246:41−53

doi: 10.1007/s00217-019-03398-7
[43]

Krstonošić MA, Hogervorst JC, Mikulić M, Gojković-Bukarica L. 2020. Development of HPLC method for determination of phenolic compounds on a core shell column by direct injection of wine samples. Acta Chromatographica 32:134−38

doi: 10.1556/1326.2019.00611
[44]

Wang P, Ma J, Meng X, Li X, Liu Y, et al. 2014. Changes in Flavor characteristics and bacterial diversity during traditional fermentation of Chinese rice wines from Shaoxing region. Food Control 44:58−63

doi: 10.1016/j.foodcont.2014.03.018
[45]

Li B, Kimatu BM, Pei F, Chen S, Feng X, et al. 2017. Non-volatile flavour components in Lentinus edodes after hot water blanching and microwave blanching. International Journal of Food Properties 20:S2532−S2542

doi: 10.1080/10942912.2017.1373667
[46]

Ghasemi-Varnamkhasti M, Apetrei C, Lozano J, Anyogu A. 2018. Potential use of electronic noses electronic tongues and biosensors as multisensor systems for spoilage examination in foods. Trends in Food Science & Technology 80:71−92

doi: 10.1016/j.jpgs.2018.07.018
[47]

Yu H, Wang J. 2007. Discrimination of LongJing green-tea grade by electronic nose. Sensors and Actuators B: Chemical 122:134−40

doi: 10.1016/j.snb.2006.05.019
[48]

Liu M, Han X, Tu K, Pan L, Tu J, et al. 2012. Application of electronic nose in Chinese spirits quality control and flavour assessment. Food Control 26:564−70

doi: 10.1016/j.foodcont.2012.02.024
[49]

Dong WJ, Hu RS, Long YZ, Li HH, Zhang YJ, et al. 2019. Comparative evaluation of the volatile profiles and taste properties of roasted coffee beans as affected by drying method and detected by electronic nose electronic tongue, and HS-SPME-GC-MS. Food Chemistry 272:723−31

doi: 10.1016/j.foodchem.2018.08.068
[50]

Narayan Y. 2021. Hb vsEMG signal classification with time domain and Frequency domain features using LDA and ANN classifier. Materials Today: Proceedings 37:3226−30

doi: 10.1016/j.matpr.2020.09.091
[51]

Gómez AH, Hu G, Wang J, Pereira AG. 2006. Evaluation of tomato maturity by electronic nose. Computers and Electronics in Agriculture 54:44−52

doi: 10.1016/j.compag.2006.07.002
[52]

Fang D, Yang W, Kimatu BM, Zhao L, An X, et al. 2017. Comparison of flavour qualities of mushrooms (Flammulina velutipes) packed with different packaging materials. Food Chemistry 232:1−9

doi: 10.1016/j.foodchem.2017.03.161
[53]

Merkyte V, Morozova K, Boselli E, Scampicchio M. 2018. Fast and simultaneous determination of antioxidant activity total phenols and bitterness of red wines by a multichannel amperometric electronic tongue. Electroanalysis 30:314−19

doi: 10.1002/elan.201700652
[54]

Parra V, Arrieta ÁA, Fernández-Escudero JA, García H, Apetrei C, et al. 2006. E-tongue based on a hybrid array of voltammetric sensors based on phthalocyanines perylene derivatives and conducting polymers:Discrimination capability towards red wines elaborated with different varieties of grapes. Sensors and Actuators B: Chemical 115:54−61

doi: 10.1016/j.snb.2005.08.040