[1] |
Zenna N, Senthilkumar K, Sie M. 2017. Rice Production in Africa. In Rice Production Worldwide, eds. Chauhan BS, Jabran K, Mahajan G. Cham: Springer. pp. 117–35. https://doi.org/10.1007/978-3-319-47516-5_5 |
[2] |
Zeigler RS, Leong SA, Teng PS, CAB International, International Rice Research Institute. 1994. Rice blast disease. United Kingdom: Wallingford CAB/IRRI. 626 pp. |
[3] |
Asibi AE, Chai Q, Coulter JA. 2019. Rice Blast: A disease with implications for global food security. Agronomy 9:451 doi: 10.3390/agronomy9080451 |
[4] |
Besi MI, Tucker SL, Sesma A. 2009. Magnaporthe and its relatives. Encyclopedia of Life Sciences. Chichester, UK: John Wiley & Sons. https://doi.org/10.1002/9780470015902.a0021311 |
[5] |
Aktar MW, Sengupta D, Chowdhury A. 2009. Impact of pesticides use in agriculture: their benefits and hazards. Interdisciplinary Toxicology 2:1−12 doi: 10.2478/v10102-009-0001-7 |
[6] |
O'Callaghan M. 2016. Microbial inoculation of seed for improved crop performance: issues and opportunities. Applied Microbiology and Biotechnology 100:5729−46 doi: 10.1007/s00253-016-7590-9 |
[7] |
Rocha I, Ma Y, Souza-Alonso P, Vosátka M, Freitas H, Oliveira RS. 2019. Seed coating: A tool for delivering beneficial microbes to agricultural crops. Frontiers in Plant Science 10:1357 doi: 10.3389/fpls.2019.01357 |
[8] |
Peng G, McGregor L, Lahlali R, Gossen BD, Hwang SF, et al. 2011. Potential biological control of clubroot on canola and crucifer vegetable crops. Plant Pathology 60:566−74 doi: 10.1111/j.1365-3059.2010.02400.x |
[9] |
Müller H, Berg G. 2008. Impact of formulation procedures on the effect of the biocontrol agent Serratia plymuthica HRO-C48 on Verticillium wilt in oilseed rape. BioControl 53:905−16 doi: 10.1007/s10526-007-9111-3 |
[10] |
Angelopoulou DJ, Naska EJ, Paplomatas EJ, Tjamos SE. 2014. Biological control agents (BCAs) of verticillium wilt: influence of application rates and delivery method on plant protection, triggering of host defence mechanisms and rhizosphere populations of BCAs. Plant Pathology 63:1062−69 doi: 10.1111/ppa.12198 |
[11] |
Vidhyasekaran P, Rabindran R, Muthamilan M, Nayar K, Rajappan K, et al. 1997. Development of a powder formulation of Pseudomonas fluorescens for control of rice blast. Plant Pathology 46:291−97 doi: 10.1046/j.1365-3059.1997.d01-27.x |
[12] |
Xu T, Li Y, Zeng X, Yang X, Yang Y, et al. 2017. Isolation and evaluation of endophytic Streptomyces endus OsiSh-2 with potential application for biocontrol of rice blast disease. Journal of the Science of Food and Agriculture 97:1149−57 doi: 10.1002/jsfa.7841 |
[13] |
Spence C, Alff E, Johnson C, Ramos C, Donofrio N, et al. 2014. Natural rice rhizospheric microbes suppress rice blast infections. BMC Plant Biology 14:130 doi: 10.1186/1471-2229-14-130 |
[14] |
Chou C, Castilla N, Hadi B, Tanaka T, Chiba S, et al. 2020. Rice blast management in Cambodian rice fields using Trichoderma harzianum and a resistant variety. Crop Protection 135:104864 doi: 10.1016/j.cropro.2019.104864 |
[15] |
Li H, Guan Y, Dong Y, Zhao L, Rong S, et al. 2018. Isolation and evaluation of endophytic Bacillus tequilensis GYLH001 with potential application for biological control of Magnaporthe oryzae. PLoS One 13:e0203505 doi: 10.1371/journal.pone.0203505 |
[16] |
Chen WC, Chiou TY, Delgado AL, Liao CS. 2019. The control of rice blast disease by the novel biofungicide formulations. Sustainability 11:3449 doi: 10.3390/su11123449 |
[17] |
Filippi MCC, da Silva GB, Silva-Lobo VL, Côrtes MVCB, Moraes AJG, et al. 2011. Leaf blast (Magnaporthe oryzae) suppression and growth promotion by rhizobacteria on aerobic rice in Brazil. Biological Control 58:160−66 doi: 10.1016/j.biocontrol.2011.04.016 |
[18] |
Murunde R, Ringo G, Robinson-Boyer L, Xu X. 2022. Effective biocontrol of rice blast through dipping transplants and foliar applications. Agronomy 12:592 doi: 10.3390/agronomy12030592 |
[19] |
Xu XM, Jeffries P, Pautasso M, Jeger MJ. 2011. Combined use of biocontrol agents to manage plant diseases in theory and practice. Phytopathology 101:1024−31 doi: 10.1094/PHYTO-08-10-0216 |
[20] |
R Core Development Team. 2019. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. www.R-project.org. |
[21] |
Ali H, Nadarajah K. 2014. Evaluating the efficacy of Trichoderma spp and Bacillus subtilis as biocontrol agents against Magnaporthe grisea in rice. Australian Journal of Crop Science 8:1324−35 |
[22] |
Sesma A, Osbourn AE. 2004. The rice leaf blast pathogen undergoes developmental processes typical of root-infecting fungi. Nature 431:582−86 doi: 10.1038/nature02880 |
[23] |
du Jardin P. 2015. Plant biostimulants: Definition, concept, main categories and regulation. Scientia Horticulturae 196:3−14 doi: 10.1016/j.scienta.2015.09.021 |
[24] |
Bulgari R, Franzoni G, Ferrante A. 2019. Biostimulants application in horticultural crops under abiotic stress conditions. Agronomy 9:306 doi: 10.3390/agronomy9060306 |
[25] |
Pieterse CMJ, Zamioudis C, Berendsen RL, Weller DM, Van Wees SCM, et al. 2014. Induced systemic resistance by beneficial microbes. Annual Review of Phytopathology 52:347−75 doi: 10.1146/annurev-phyto-082712-102340 |
[26] |
Sood M, Kapoor D, Kumar V, Sheteiwy MS, Ramakrishnan M, et al. 2020. Trichoderma: The "secrets" of a multitalented biocontrol agent. Plants 9:762 doi: 10.3390/plants9060762 |
[27] |
Radhakrishnan R, Hashem A, Abd Allah EF. 2017. Bacillus: A biological tool for crop improvement through bio-molecular changes in adverse environments. Frontiers in Physiology 8:667 doi: 10.3389/fphys.2017.00667 |
[28] |
Poveda J, Eugui D. 2022. Combined use of Trichoderma and beneficial bacteria (mainly Bacillus and Pseudomonas): Development of microbial synergistic bio-inoculants in sustainable agriculture. Biological Control 176:105100 doi: 10.1016/j.biocontrol.2022.105100 |
[29] |
Woo SL, Ruocco M, Vinale F, Nigro M, Marra R, et al. 2014. Trichoderma-based products and their widespread use in agriculture. The Open Mycology Journal 8:71−126 doi: 10.2174/1874437001408010071 |
[30] |
García-López AM, Recena R, Avilés M, Delgado A. 2018. Effect of Bacillus subtilis QST713 and Trichoderma asperellum T34 on P uptake by wheat and how it is modulated by soil properties. Journal of Soils and Sediments 18:727−38 doi: 10.1007/s11368-017-1829-7 |
[31] |
Chowdappa P, Mohan Kumar SP, Jyothi Lakshmi M, Upreti KK. 2013. Growth stimulation and induction of systemic resistance in tomato against early and late blight by Bacillus subtilis OTPB1 or Trichoderma harzianum OTPB3. Biological Control 65:109−17 doi: 10.1016/j.biocontrol.2012.11.009 |