[1] |
Cardello AV. 1995. Food quality: relativity, context and consumer expectations. Food Quality and Preference 6:163−70 doi: 10.1016/0950-3293(94)00039-X |
[2] |
Cockerton HM, Karlström A, Johnson AW, Li B, Stavridou E, et al. 2021. Genomic informed breeding strategies for strawberry yield and fruit quality traits. Frontiers in Plant Science 12:724847 doi: 10.3389/fpls.2021.724847 |
[3] |
Giovannoni J. 2001. Molecular biology of fruit maturation and ripening. Annual Review of Plant Physiology and Plant Molecular Biology 52:725−49 doi: 10.1146/annurev.arplant.52.1.725 |
[4] |
Giovannoni JJ. 2004. Genetic regulation of fruit development and ripening. The Plant Cell 16:S170−S180 doi: 10.1105/tpc.019158 |
[5] |
Moya-León MA, Mattus-Araya E, Herrera R. 2019. Molecular events occurring during softening of strawberry fruit. Frontiers in Plant Science 10:615 doi: 10.3389/fpls.2019.00615 |
[6] |
Valentinuzzi F, Pii Y, Vigani G, Lehmann M, Cesco S, et al. 2015. Phosphorus and iron deficiencies induce a metabolic reprogramming and affect the exudation traits of the woody plant Fragaria×ananassa. Journal of Experimental Botany 66:6483−95 doi: 10.1093/jxb/erv364 |
[7] |
Afroz CA, Shimul MAH, Ikrum M, Siddiky MA, Razzaque MA. 2016. Effects of nitrogen phosphorus potassium and sulphur on growth yield and nutrient content of strawberry (Fragaria ananassa). Journal of Environmental Science and Natural Resources 9:99−108 doi: 10.3329/jesnr.v9i1.30300 |
[8] |
Cao F, Guan C, Dai H, Li X, Zhang Z. 2015. Soluble solids content is positively correlated with phosphorus content in ripening strawberry fruits. Scientia Horticulturae 195:183−87 doi: 10.1016/j.scienta.2015.09.018 |
[9] |
Wang Y, Zhang F, Cui W, Chen K, Zhao R, et al. 2019. The FvPHR1 transcription factor control phosphate homeostasis by transcriptionally regulating miR399a in woodland strawberry. Plant Science 280:258−68 doi: 10.1016/j.plantsci.2018.12.025 |
[10] |
Liu J, Yang L, Luan M, Wang Y, Zhang C, et al. 2015. A vacuolar phosphate transporter essential for phosphate homeostasis in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 112:E6571−E6578 doi: 10.1073/pnas.1514598112 |
[11] |
Liu TY, Huang TK, Yang SY, Hong YT, Huang SM, et al. 2016. Identification of plant vacuolar transporters mediating phosphate storage. Nature Communications 7:11095 doi: 10.1038/ncomms11095 |
[12] |
Huang Y, Xu P, Hou B, Shen Y. 2019. Strawberry tonoplast transporter, FaVPT1, controls phosphate accumulation and fruit quality. Plant, Cell & Environment 42:2715−29 doi: 10.1111/pce.13598 |
[13] |
Bai Q, Chen X, Zheng Z, Feng J, Zhang Y, et al. 2023. Vacuolar Phosphate Transporter1 (VPT1) may transport sugar in response to soluble sugar status of grape fruits. Horticulture Research 10:uhac260 doi: 10.1093/hr/uhac260 |
[14] |
Jia H, Chai Y, Li C, Lu D, Luo J, et al. 2011. Abscisic acid plays an important role in the regulation of strawberry fruit ripening. Plant Physiology 157:188−99 doi: 10.1104/pp.111.177311 |
[15] |
Liao X, Li M, Liu B, Yan M, Yu X, et al. 2018. Interlinked regulatory loops of ABA catabolism and biosynthesis coordinate fruit growth and ripening in woodland strawberry. Proceedings of the National Academy of Sciences of the United States of America 115:E11542−E11550 doi: 10.1073/pnas.181257511 |
[16] |
Martín-Pizarro C, Vallarino JG, Osorio S, Meco V, Urrutia M, et al. 2021. The NAC transcription factor FaRIF controls fruit ripening in strawberry. The Plant Cell 33:1574−93 doi: 10.1093/plcell/koab070 |
[17] |
Carrasco-Orellana C, Stappung Y, Mendez-Yañez A, Allan AC, Espley RV, et al. 2018. Characterization of a ripening-related transcription factor FcNAC1 from Fragaria chiloensis fruit. Scientific Reports 8:10524 doi: 10.1038/s41598-018-28226-y |
[18] |
Xie Y, Ma Y, Bi P, Wei W, Liu J, et al. 2020. Transcription factor FvTCP9 promotes strawberry fruit ripening by regulating the biosynthesis of abscisic acid and anthocyanins. Plant Physiology and Biochemistry 146:374−83 doi: 10.1016/j.plaphy.2019.11.004 |
[19] |
Jia H, Jiu S, Zhang C, Wang C, Tariq P, et al. 2016. Abscisic acid and sucrose regulate tomato and strawberry fruit ripening through the abscisic acid-stress-ripening transcription factor. Plant Biotechnology Journal 14:2045−65 doi: 10.1111/pbi.12563 |
[20] |
Yi S, Mao J, Zhang X, Li X, Zhang Z, et al. 2022. FveARF2 negatively regulates fruit ripening and quality in strawberry. Frontiers in Plant Science 13:1023739 doi: 10.3389/fpls.2022.1023739 |
[21] |
Yue M, Jiang L, Zhang N, Zhang L, Liu Y, et al. 2022. Importance of FaWRKY71 in strawberry (Fragaria × ananassa) fruit ripening. International Journal of Molecular Sciences 23:12483 doi: 10.3390/ijms232012483 |
[22] |
Sánchez-Gómez C, Posé D, Martín-Pizarro C. 2022. Insights into transcription factors controlling strawberry fruit development and ripening. Frontiers in Plant Science 13:1022369 doi: 10.3389/fpls.2022.1022369 |
[23] |
Wang H, Zhang H, Yang Y, Li M, Zhang Y, et al. 2020. The control of red colour by a family of MYB transcription factors in octoploid strawberry (Fragaria × ananassa) fruits. Plant Biotechnology Journal 18:1169−84 doi: 10.1111/pbi.13282 |
[24] |
Zhang Z, Shi Y, Ma Y, Yang X, Yin X, et al. 2020. The strawberry transcription factor FaRAV1 positively regulates anthocyanin accumulation by activation of FaMYB10 and anthocyanin pathway genes. Plant Biotechnology Journal 18:2267−79 doi: 10.1111/pbi.13382 |
[25] |
Manivannan A, Han K, Lee SY, Lee HE, Hong JP, et al. 2021. Genome-wide analysis of MYB10 transcription factor in Fragaria and identification of QTLs associated with fruit color in octoploid strawberry. International Journal of Molecular Sciences 22:12587 doi: 10.3390/ijms222212587 |
[26] |
Castillejo C, Waurich V, Wagner H, Ramos R, Oiza N, et al. 2020. Allelic variation of MYB10 is the major force controlling natural variation in skin and flesh color in strawberry (Fragaria spp.) fruit. The Plant Cell 32:3723−49 doi: 10.1105/tpc.20.00474 |
[27] |
Aharoni A, De Vos CHR, Wein M, Sun Z, Greco R, et al. 2001. The strawberry FaMYB1 transcription factor suppresses anthocyanin and flavonol accumulation in transgenic tobacco. The Plant Journal 28:319−32 doi: 10.1046/j.1365-313X.2001.01154.x |
[28] |
Liu Y, Ye Y, Wang Y, Jiang L, Yue M, et al. 2022. B-box transcription factor FaBBX22 promotes light-induced anthocyanin accumulation in strawberry (Fragaria × ananassa). International Journal of Molecular Sciences 23:7757 doi: 10.3390/ijms23147757 |
[29] |
Li Y, Xu P, Chen G, Wu J, Liu Z, et al. 2020. FvbHLH9 functions as a positive regulator of anthocyanin biosynthesis by forming a HY5-bHLH9 transcription complex in strawberry fruits. Plant and Cell Physiology 61:826−37 doi: 10.1093/pcp/pcaa010 |
[30] |
Molina-Hidalgo FJ, Medina-Puche L, Cañete-Gómez C, Franco-Zorrilla JM, López-Vidriero I, et al. 2017. The fruit-specific transcription factor FaDOF2 regulates the production of eugenol in ripe fruit receptacles. Journal of Experimental Botany 68:4529−43 doi: 10.1093/jxb/erx257 |
[31] |
Medina-Puche L, Molina-Hidalgo FJ, Boersma M, Schuurink RC, López-Vidriero I, et al. 2015. An R2R3-MYB transcription factor regulates eugenol production in ripe strawberry fruit receptacles. Plant Physiology 168:598−614 doi: 10.1104/pp.114.252908 |
[32] |
Zhang Y, Yin X, Xiao Y, Zhang Z, Li S, et al. 2018. An ETHYLENE RESPONSE FACTOR-MYB transcription complex regulates furaneol biosynthesis by activating QUINONE OXIDOREDUCTASE expression in strawberry. Plant Physiology 178:189−201 doi: 10.1104/pp.18.00598 |
[33] |
Wang S, Shi M, Zhang Y, Pan Z, Xie X, et al. 2022. The R2R3-MYB transcription factor FaMYB63 participates in regulation of eugenol production in strawberry. Plant Physiology 188:2146−65 doi: 10.1093/plphys/kiac014 |
[34] |
Zhang Y, Li S, Chen Y, Liu Y, Lin Y, et al. 2022. Heterologous overexpression of strawberry bZIP11 induces sugar accumulation and inhibits plant growth of tomato. Scientia Horticulturae 292:110634 doi: 10.1016/j.scienta.2021.110634 |
[35] |
Wei L, Mao W, Jia M, Xing S, Ali U, et al. 2018. FaMYB44.2, a transcriptional repressor, negatively regulates sucrose accumulation in strawberry receptacles through interplay with FaMYB10. Journal of Experimental Botany 69:4805−20 doi: 10.1093/jxb/ery249 |
[36] |
Jia H, Wang Y, Sun M, Li B, Han Y, et al. 2013. Sucrose functions as a signal involved in the regulation of strawberry fruit development and ripening. New Phytologist 198:453−65 doi: 10.1111/nph.12176 |
[37] |
Bai Y, Liu H, Zhu K, Cheng Z. 2022. Evolution and functional analysis of the GRAS family genes in six Rosaceae species. BMC Plant Biology 22:569 doi: 10.1186/s12870-022-03925-x |
[38] |
Chen H, Li H, Lu X, Chen L, Liu J, et al. 2019. Identification and expression analysis of GRAS transcription factors to elucidate candidate genes related to stolons, fruit ripening and abiotic stresses in woodland strawberry (Fragaria vesca). International Journal of Molecular Sciences 20:4593 doi: 10.3390/ijms20184593 |
[39] |
Huang W, Xian Z, Kang X, Tang N, Li Z. 2015. Genome-wide identification, phylogeny and expression analysis of GRAS gene family in tomato. BMC Plant Biology 15:209 doi: 10.1186/s12870-015-0590-6 |
[40] |
Zhang H, Mi L, Xu L, Yu C, Li C, et al. 2019. Genome-wide identification, characterization, interaction network and expression profile of GRAS gene family in sweet orange (Citrus sinensis). Scientific Reports 9:2156 doi: 10.1038/s41598-018-38185-z |
[41] |
Sun TP. 2008. Gibberellin metabolism, perception and signaling pathways in Arabidopsis. The Arabidopsis Book 2008:e0103 doi: 10.1199/tab.0103 |
[42] |
Heo JO, Chang KS, Kim IA, Lee MH, Lee SA, et al. 2011. Funneling of gibberellin signaling by the GRAS transcription regulator SCARECROW-LIKE 3 in the Arabidopsis root. Proceedings of the National Academy of Sciences of the United States of America 108:2166−71 doi: 10.1073/pnas.1012215108 |
[43] |
Golldack D, Li C, Mohan H, Probst N. 2013. Gibberellins and abscisic acid signal crosstalk: living and developing under unfavorable conditions. Plant Cell Reports volume 32:1007−16 doi: 10.1007/s00299-013-1409-2 |
[44] |
Huang W, Peng S, Xian Z, Lin D, Hu G, et al. 2017. Overexpression of a tomato miR171 target gene SlGRAS24 impacts multiple agronomical traits via regulating gibberellin and auxin homeostasis. Plant Biotechnology Journal 15:472−88 doi: 10.1111/pbi.12646 |
[45] |
Zhang L, Zhu M, Ren L, Li A, Chen G, et al. 2018. The SlFSR gene controls fruit shelf-life in tomato. Journal of Experimental Botany 69:2897−909 doi: 10.1093/jxb/ery116 |
[46] |
Liu Y, Shi Y, Su D, Lu W, Li Z. 2021. SlGRAS4 accelerates fruit ripening by regulating ethylene biosynthesis genes and SlMADS1 in tomato. Horticulture Research 8:3 doi: 10.1038/s41438-020-00431-9 |
[47] |
Caruana JC, Sittmann JW, Wang W, Liu Z. 2018. Suppressor of runnerless encodes a DELLA protein that controls runner formation for asexual reproduction in strawberry. Molecular Plant 11:230−33 doi: 10.1016/j.molp.2017.11.001 |
[48] |
Feng J, Cheng L, Zhu Z, Yu F, Dai C, et al. 2021. GRAS transcription factor LOSS OF AXILLARY MERISTEMS is essential for stamen and runner formation in wild strawberry. Plant Physiology 186:1970−84 doi: 10.1093/plphys/kiab184 |
[49] |
Kang C, Darwish O, Geretz A, Shahan R, Alkharouf N, et al. 2013. Genome-scale transcriptomic insights into early-stage fruit development in woodland strawberry Fragaria vesca. The Plant Cell 25:1960−78 doi: 10.1105/tpc.113.111732 |
[50] |
Pillet J, Yu HW, Chambers AH, Whitaker VM, Folta KM. 2015. Identification of candidate flavonoid pathway genes using transcriptome correlation network analysis in ripe strawberry (Fragaria × ananassa) fruits. Journal of Experimental Botany 66:4455−67 doi: 10.1093/jxb/erv205 |
[51] |
Pysh LD, Wysocka-Diller JW, Camilleri C, Bouchez D, Benfey PN. 1999. The GRAS gene family in Arabidopsis: sequence characterization and basic expression analysis of the SCARECROW-LIKE genes. The Plant Journal 18:111−19 doi: 10.1046/j.1365-313X.1999.00431.x |
[52] |
Bai Q, Huang Y, Shen Y. 2020. The physiological and molecular mechanism of abscisic acid in regulation of fleshy fruit ripening. Frontiers in Plant Science 11:619953 doi: 10.3389/fpls.2020.619953 |
[53] |
Li M, Wang X, Li C, Li H, Zhang J, et al. 2018. Silencing GRAS2 reduces fruit weight in tomato. Journal of Integrative Plant Biology 60:498−513 doi: 10.1111/jipb.12636 |
[54] |
Wang Z, Wong DCJ, Wang Y, Xu G, Ren C, et al. 2021. GRAS-domain transcription factor PAT1 regulates jasmonic acid biosynthesis in grape cold stress response. Plant Physiology 186:1660−78 doi: 10.1093/plphys/kiab142 |
[55] |
Heidstra R, Welch D, Scheres B. 2004. Mosaic analyses using marked activation and deletion clones dissect Arabidopsis SCARECROW action in asymmetric cell division. Genes & Development 18:1964−69 doi: 10.1101/gad.305504 |
[56] |
Heyman J, Cools T, Canher B, Shavialenka S, Traas J, et al. 2016. The heterodimeric transcription factor complex ERF115-PAT1 grants regeneration competence. Nature Plants 2:16165 doi: 10.1038/nplants.2016.165 |
[57] |
Karppinen K, Tegelberg P, Häggman H, Jaakola L. 2018. Abscisic acid regulates anthocyanin biosynthesis and gene expression associated with cell wall modification in ripening bilberry (Vaccinium myrtillus L.) fruits. Front Plant Sci 9:1259 doi: 10.3389/fpls.2018.01259 |
[58] |
Harberd NP, Belfield E, Yasumura Y. 2009. The angiosperm gibberellin-GID1-DELLA growth regulatory mechanism: how an "inhibitor of an inhibitor" enables flexible response to fluctuating environments. The Plant Cell 21:1328−39 doi: 10.1105/tpc.109.066969 |
[59] |
Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402−8 doi: 10.1006/meth.2001.1262 |
[60] |
Hou B, Xu C, Shen Y. 2018. A leu-rich repeat receptor-like protein kinase, FaRIPK1, interacts with the ABA receptor, FaABAR, to regulate fruit ripening in strawberry. Journal of Experimental Botany 69:1569−82 doi: 10.1093/jxb/erx488 |
[61] |
Huang Y, Sun M, Ye Q, Wu X, Wu W, et al. 2017. Abscisic acid modulates seed germination via ABA INSENSITIVE5-mediated PHOSPHATE1. Plant Physiology 175:1661−68 doi: 10.1104/pp.17.00164 |