Anderson TH, Domsch KH. 1989. Ratios of microbial biomass carbon to total organic carbon in arable soils. Soil Biology and Biochemistry 21(4):471−79 doi: 10.1016/0038-0717(89)90117-X |
Bachar A, Al-Ashhab A, Soares MIM, Sklarz MY, Angel R, et al. 2010. Soil microbial abundance and diversity along a low precipitation gradient. Microbial Ecology 60:453−61 doi: 10.1007/s00248-010-9727-1 |
Bahram M, Hildebrand F, Forslund SK, Anderson JL, Soudzilovskaia NA, et al. 2018. Bork Structure and function of the global topsoil microbiome. Nature 560:233−37 doi: 10.1038/s41586-018-0386-6 |
Banerjee S, van der Heijden MGA. 2023. Soil microbiomes and one health. Nature Reviews Microbiology 21:6−20 doi: 10.1038/s41579-022-00779-w |
Bian R, Cheng K, Zheng J, Liu X, Liu Y, et al. 2015. Does metal pollution matter with C retention by rice soil? Scientific Reports 5:13233 doi: 10.1038/srep13233 |
Black CA, Evans DD, Dinauer RC. 1965. Methods of soil analysis. Vol. 9. Madison, WI: American Society of Agronomy. pp. 653−708 |
Coban O, De Deyn GB, van der Ploeg M. 2022. Soil microbiota as game-changers in restoration of degraded lands. Science 375:abe0725 doi: 10.1126/science.abe0725 |
Conant RT, Ryan MG, Ågren GI, Birge HE, Davidson EA, et al. 2011. Temperature and soil organic matter decomposition rates–synthesis of current knowledge and a way forward. Global Change Biology 17(11):3392−404 doi: 10.1111/j.1365-2486.2011.02496.x |
Cotrufo MF, Wallenstein MD, Boot CM, Denef K, Paul E. 2013. The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? Global Change Biology 19:988−95 doi: 10.1111/gcb.12113 |
Dequiedt S, Saby NPA, Lelievre M, Jolivet C, Thioulouse J, et al. 2011. Biogeographical patterns of soil molecular microbial biomass as influenced by soil characteristics and management. Global Ecology and Biogeography 20(4):641−52 doi: 10.1111/j.1466-8238.2010.00628.x |
Fang J, Chen A, Peng C, Zhao S, Ci L. 2001. Changes in forest biomass carbon storage in China between 1949 and 1998. Science 292:2320−22 doi: 10.1126/science.1058629 |
Fierer N, Strickland MS, Liptzin D, Bradford MA, Cleveland CC. 2009. Global patterns in belowground communities. Ecology letters 12(11):1238−49 doi: 10.1111/j.1461-0248.2009.01360.x |
Franzluebbers AJ, Haney RL, Honeycutt CW, Arshad MA, Schomberg HH, et al. 2001. Climatic influences on active fractions of soil organic matter. Soil Biology and Biochemistry 33(7):1103−11 doi: 10.1016/s0038-0717(01)00016-5 |
Frey SD, Lee J, Melillo JM, Six J. 2013. The temperature response of soil microbial efficiency and its feedback to climate. Nature Climate Change 3(4):395−98 doi: 10.1038/nclimate1796 |
Gong Z. 1999. Chinese soil taxonomy: theory, method and practice. Beijing: Science Press. |
Grisi B, Grace C, Brookes PC, Benedetti A, Dell'abate MT. 1998. Temperature effects on organic matter and microbial biomass dynamics in temperate and tropical soils. Soil Biology & Biochemistry 30(10−11):1309−15 doi: 10.1016/s0038-0717(98)00016-9 |
Guerra CA, Bardgett RD, Caon L, Crowther TW, Delgado-Baquerizo M, et al. 2021. Tracking, targeting, and conserving soil biodiversity. Science 371:239−41 doi: 10.1126/science.abd7926 |
Gupta VVSR, Germida JJ. 2015. Soil aggregation: Influence on microbial biomass and implications for biological processes. Soil Biology Biochemistry 80:A3−A9 doi: 10.1016/j.soilbio.2014.09.002 |
Janzen HH, Janzen DW, Gregorich EG. 2021. The 'soil health' metaphor: illuminating or illusory? Soil Biology and Biochemistry 159:108167 doi: 10.1016/j.soilbio.2021.108167 |
Jenkinson DS, Ladd JN. 1981. Microbial biomass in soil: measurement and turnover. In Soil biochemistry, eds. Paul EA, Ladd JN. New York: Marcel Dekker. pp. 415−71 |
Kallenbach CM, Frey SD, Grandy AS. 2016. Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls. Nature Communications 7:13630 doi: 10.1038/ncomms13630 |
Lehmann J, Bossio DA, Kögel-Knabner I, Rillig MC. 2020. The concept and future prospects of soil health. Nature Reviews Earth & Environment 1:544−53 doi: 10.1038/s43017-020-0080-8 |
Lehmann J, Kleber M. 2015. The contentious nature of soil organic matter. Nature 528:60−68 doi: 10.1038/nature16069 |
Leifeld J, Kögel-Knabner I. 2005. Soil organic matter fractions as early indicators for carbon stock changes under different land-use? Geoderma 124(1):143−55 doi: 10.1016/j.geoderma.2004.04.009 |
Martiny JBH, Bohannan BJ, Brown JH, Colwell RK, Fuhrman JA, et al. 2006. Microbial biogeography: putting microorganisms on the map. Nature Reviews Microbiology 4(2):102−12 doi: 10.1038/nrmicro1341 |
Lejon DPH, Sebastia J, Lamy I, Chaussod R, Ranjard L. 2007. Relationships between soil organic status and microbial community density and genetic structure in two agricultural soils submitted to various types of organic management. Microbial Ecology 53(4):650−63 doi: 10.1007/s00248-006-9145-6 |
Li T, Yuan Y, Mou Z, Li Y, Kuang L, et al. 2023. Faster accumulation and greater contribution of glomalin to the soil organic carbon pool than amino sugars do under tropical coastal forest restoration. Global Change Biology 29:533−46 doi: 10.1111/gcb.16467 |
Liu Y, Wang P, Ding Y, Lu H, Li L, et al. 2016. Microbial activity promoted with organic carbon accumulation in macroaggregates of paddy soils under long-term rice cultivation. Biogeosciences 13(24):6565−86 doi: 10.5194/bg-13-6565-2016 |
Ma L, Guo C, Lü X, Yuan S, Wang R. 2015. Soil moisture and land use are major determinants of soil microbial community composition and biomass at a regional scale in northeastern China. Biogeosciences 12(8):2585−96 doi: 10.5194/bg-12-2585-2015 |
Mao DM, Min YW, Yu LL, Martens R, Insam H. 1992. Effect of afforestation on microbial biomass and activity in soils of tropical China. Soil Biology and Biochemistry 24(9):865−72 doi: 10.1016/0038-0717(92)90007-K |
Matejovic I. 1997. Determination of carbon and nitrogen in samples of various soils by the dry combustion. Communications in Soil Science & Plant Analysis, 28(17−18):1499−511 doi: 10.1080/00103629709369892 |
Miltner A, Bombach P, Schmidt-Brücken B, Kästner M. 2012. SOM genesis: microbial biomass as a significant source. Biogeochemistry 111:41−55 doi: 10.1007/s10533-011-9658-z |
Pan G. 2009. Soil organic carbon stock, dynamics and climate change mitigation of China. Advances in Climate Change Research 4(5):282−89 |
Pan G, Cheng K, Lu H, Li L, Liu X, et al. 2015. Sustainable soil management: an emerging soil science challenge for global development. Scientia Agricultura Sinica 48(23):4607−20 doi: 10.3864/j.issn.0578-1752.2015.23.002 |
Pan G, Ding Y, Chen S, Sun J, Feng X, et al. 2019. Exploring the nature of soil organic matter from humic substances isolation to SOMics of molecular assemblage. Advances in Earth Science 34(5):451−70 doi: 10.11867/j.issn.1001-8166.2019.05.0451 |
Paul EA. 2016. The nature and dynamics of soil organic matter: Plant inputs, microbial transformations, and organic matter stabilization. Soil Biology and Biochemistry 98:109−26 doi: 10.1016/j.soilbio.2016.04.001 |
Powlson DS. 1994. The soil microbial biomass: before, beyond and back. |
Schmidt MW, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, et al. 2011. Persistence of soil organic matter as an ecosystem property. Nature 478:49−56 doi: 10.1038/nature10386 |
Seneviratne SI, Corti T, Davin EL, Hirschi M, Jaeger EB, et al. 2010. Investigating soil moisture–climate interactions in a changing climate: A review. Earth-Science Reviews 99(3):125−61 doi: 10.1016/j.earscirev.2010.02.004 |
Serna-Chavez HM, Fierer N, van Bodegom PM. 2013. Global drivers and patterns of microbial abundance in soil. Global Ecology and Biogeography 22(10):1162−72 doi: 10.1111/geb.12070 |
Shen Q, Pan G. 2022. Inaugural editorial. Soil Science and Environment 1:1 doi: 10.48130/sse-2022-0001 |
Singh JS, Gupta VK. 2018. Soil microbial biomass: A key soil driver in management of ecosystem functioning. Science of the Total Environment 634:497−500 doi: 10.1016/j.scitotenv.2018.03.373 |
Six J, Paustian K. 2014. Aggregate-associated soil organic matter as an ecosystem property and a measurement tool. Soil Biology and Biochemistry 68:A4−A9 doi: 10.1016/j.soilbio.2013.06.014 |
Smith P, Cotrufo MF, Rumpel C, Paustian K, Kuikman PJ, et al. 2015. Biogeochemical cycles and biodiversity as key drivers of ecosystem services provided by soils. Soil Discussions 2(1):537−86 doi: 10.5194/soil-1-665-2015 |
Sollins P, Homann P, Caldwell BA. 1996. Stabilization and destabilization of soil organic matter: mechanisms and controls. Geoderma 74(1-2):65−105 doi: 10.1016/S0016-7061(96)00036-5 |
Song G, Li L, Pan G, Zhang Q. 2005. Topsoil organic carbon storage of China and its loss by cultivation. Biogeochemistry 74(1):47−62 doi: 10.1007/s10533-004-2222-3 |
Song W, Deng X. 2017. Land-use/land-cover change and ecosystem service provision in China. Science of the Total Environment 576:705−19 doi: 10.1016/j.scitotenv.2016.07.078 |
Sparling GP. 1992. Ratio of microbial biomass carbon to soil organic carbon as a sensitive indicator of changes in soil organic matter. Soil Research 30(2):195−207 doi: 10.1071/SR9920195 |
United Nations Environment Programme. 2022. Nature-based Solutions: Opportunities and Challenges for Scaling Up. Nairobi, Kenya. www.britannica.com/topic/United-Nations-Environment-Programme |
Vance ED, Brookes PC, Jenkinson DS. 1987. An extraction method for measuring soil microbial biomass C. Soil biology and Biochemistry 19(6):703−7 doi: 10.1016/0038-0717(87)90052-6 |
Wang XL, Jia Y, Li XG, Long RJ, Ma Q, et al. 2009. Effects of land use on soil total and light fraction organic, and microbial biomass C and N in a semi-arid ecosystem of northwest China. Geoderma 153(1):285−90 doi: 10.1016/j.geoderma.2009.08.020 |
Wardle DA. 1992. A comparative assessment of factors which influence microbial biomass carbon and nitrogen levels in soil. Biological Reviews 67:321−58 doi: 10.1111/j.1469-185X.1992.tb00728.x |
Wieder WR, Bonan GB, Allison SD. 2013. Global soil carbon projections are improved by modelling microbial processes. Nature Climate Change 3(10):909−912 doi: 10.1038/nclimate1951 |
Xie Z, Zhu J, Liu G, Cadisch G, Hasegawa T, et al. 2007. Soil organic carbon stocks in China and changes from 1980s to 2000s. Global Change Biology 13:1989−2007 doi: 10.1111/j.1365-2486.2007.01409.x |
Xu X, Thornton PE, Post WM. 2013. A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems. Global Ecology and Biogeography 22(6):737−49 doi: 10.1111/geb.12029 |
Zak DR, Tilman D, Parmenter RR, Rice CW, Fisher FM, et al. 1994. Plant production and soil microorganisms in late-successional ecosystems: A continental-scale study. Ecology 75(8):2333−47 doi: 10.2307/1940888 |
Zhang H, Fang Y, Zhang B, Luo Y, Yi X, et al. 2022. Land-use-driven change in soil labile carbon affects microbial community composition and function. Geoderma 426:116056 doi: 10.1016/j.geoderma.2022.116056 |
Zhang X, Li D, Pan G, Li L, Lin F, et al. 2008. Conservation of wetland soil C stock and climate change of China. Advances in Climate Change Research 44(4):202−8 |
Zheng X, Xia T, Yang X, Yuan T, Hu Y. 2013. The land Gini coefficient and its application for land use structure analysis in China. PLoS One 8:e76165 doi: 10.1371/journal.pone.0076165 |
Zhou H, Zhang D, Wang P, Liu X, Cheng K, et al. 2017. Changes in microbial biomass and the metabolic quotient with biochar addition to agricultural soils: a meta-analysis. Agriculture, Ecosystems & Environment 239:80−89 doi: 10.1016/j.agee.2017.01.006 |
Zhou ZH, Wang CK. 2015. Reviews and syntheses: Soil resources and climate jointly drive variations in microbial biomass carbon and nitrogen in China's forest ecosystems. Biogeosciences 12(22):6751−60 doi: 10.5194/bg-12-6751-2015 |
Zhu X, Jackson R, DeLucia EH, Tiedje JM, Liang C. 2020. The soil microbial carbon pump: from conceptual insights to empirical assessments. Global Change Biology 26:6032−6039 doi: 10.1111/gcb.15319 |