[1] |
Matsuoka Y, Vigouroux Y, Goodman MM, Jesus SG, Buckler E, et al. 2002. A single domestication for maize shown by multilocus microsatellite genotyping. PNAS 99:6080−84 doi: 10.1073/pnas.052125199 |
[2] |
Buckler ES, Holland JB, Bradbury PJ, Acharya CB, Brown PJ, et al. 2009. The genetic architecture of maize flowering time. Science 325:714−18 doi: 10.1126/science.1174276 |
[3] |
Duvick DN. 2001. Biotechnology in the 1930s: the development of hybrid maize. Nature Reviews Genetics 2:69−74 doi: 10.1038/35047587 |
[4] |
Coe EH Jr., Neuffer MG, Hoisington DA. 1988. The genetics of corn. In Corn and Corn Improvement, eds. Sprague GF, Dudley JW. Madison, WI, USA: American Society of Agronomy. pp. 81−258. |
[5] |
Richardson AE, Hake S. 2022. The power of classic maize mutants: driving forward our fundamental understanding of plants. The Plant cell 4(7):2505−17 doi: 10.1093/plcell/koac081 |
[6] |
Scandalios JG. 1982. Developmental genetics of maize. Annual review of genetics 16:85−112 doi: 10.1146/annurev.ge.16.120182.000505 |
[7] |
Yan J, Tan BC. 2019. Maize biology: From functional genomics to breeding application. Journal of Integrative Plant Biology 61(6):654−57 doi: 10.1111/jipb.12819 |
[8] |
Andorf C, Beavis WD, Hufford M, Smith S, Suza WP, et al. 2019. Technological advances in maize breeding: past, present and future. Theoretical and Applied Genetics 132:817−49 doi: 10.1007/s00122-019-03306-3 |
[9] |
Doebley JF, Gaut BS, Smith BD. 2006. The molecular genetics of crop domestication. Cell 127:1309−21 doi: 10.1016/j.cell.2006.12.006 |
[10] |
Beadle GW. 1939. Teosinte and the origin of maize. Journal of Heredity 30:245−47 doi: 10.1093/oxfordjournals.jhered.a104728 |
[11] |
Mangelsdorf PC, Reeves RG. 1938. The origin of maize. PNAS 24:303−12 doi: 10.1073/pnas.24.8.303 |
[12] |
Doebley J, Stec A. 1993. Inheritance of the morphological differences between maize and teosinte: comparison of results for two F2 populations. Genetics 134:2559−70 doi: 10.1093/genetics/134.2.559 |
[13] |
Doebley J. 2004. The genetics of maize evolution. Annual Review of Genetics 38:37−59 doi: 10.1146/annurev.genet.38.072902.092425 |
[14] |
Wright SI, Bi IV, Schroeder SG, Yamasaki M, Doebley JF, et al. 2005. The effects of artificial selection on the maize genome. Science 308:1310−14 doi: 10.1126/science.1107891 |
[15] |
Hufford MB, Xu X, van Heerwaarden J, Pyhäjärvi T, Chia JM, et al. 2012. Comparative population genomics of maize domestication and improvement. Nature Genetics 44:808−11 doi: 10.1038/ng.2309 |
[16] |
Xu G, Zhang X, Chen W, Zhang R, Li Z, et al. 2022. Population genomics of Zea species identifies selection signatures during maize domestication and adaptation. BMC Plant Biology 22:72 doi: 10.1186/s12870-022-03427-w |
[17] |
Stitzer MC, Ross-Ibarra J. 2018. Maize domestication and gene interaction. New Phytologist 220:395−408 doi: 10.1111/nph.15350 |
[18] |
Doebley J, Stec A, Gustus C. 1995. teosinte branched1 and the origin of maize: Evidence for epistasis and the evolution of dominance. Genetics 141:333−46 doi: 10.1093/genetics/141.1.333 |
[19] |
Doebley J, Stec A, Hubbard L. 1997. The evolution of apical dominance in maize. Nature 386:485−88 doi: 10.1038/386485a0 |
[20] |
Clark RM, Linton E, Messing J, Doebley JF. 2004. Pattern of diversity in the genomic region near the maize domestication gene tb1. PNAS 101:700−7 doi: 10.1073/pnas.2237049100 |
[21] |
Studer A, Zhao Q, Ross-Ibarra J, Doebley J. 2011. Identification of a functional transposon insertion in the maize domestication gene tb1. Nature Genetics 43:1160−63 doi: 10.1038/ng.942 |
[22] |
Dong Z, Xiao Y, Govindarajulu R, Feil R, Siddoway ML, et al. 2019. The regulatory landscape of a core maize domestication module controlling bud dormancy and growth repression. Nature Communications 10:3810 doi: 10.1038/s41467-019-11774-w |
[23] |
Aguilar-Martínez JA, Poza-Carrión C, Cubas P. 2007. Arabidopsis BRANCHED1 acts as an integrator of branching signals within axillary buds. The Plant Cell 19:458−72 doi: 10.1105/tpc.106.048934 |
[24] |
Takeda T, Suwa Y, Suzuki M, Kitano H, Ueguchi-Tanaka M, et al. 2003. The OsTB1 gene negatively regulates lateral branching in rice. The Plant Journal 33:513−20 doi: 10.1046/j.1365-313X.2003.01648.x |
[25] |
Wang H, Nussbaum-Wagler T, Li B, Zhao Q, Vigouroux Y, et al. 2005. The origin of the naked grains of maize. Nature 436:714−19 doi: 10.1038/nature03863 |
[26] |
Studer AJ, Wang H, Doebley JF. 2017. Selection during maize domestication targeted a gene network controlling plant and inflorescence architecture. Genetics 207:755−65 doi: 10.1534/genetics.117.300071 |
[27] |
Whipple CJ, Kebrom TH, Weber AL, Yang F, Hall D, et al. 2011. grassy tillers1 promotes apical dominance in maize and responds to shade signals in the grasses. PNAS 108:E506−E512 doi: 10.1073/pnas.1102819108 |
[28] |
Wills DM, Whipple CJ, Takuno S, Kursel LE, Shannon LM, et al. 2013. From many, one: genetic control of prolificacy during maize domestication. PLoS Genetics 9:e1003604 doi: 10.1371/journal.pgen.1003604 |
[29] |
Wang M, Zhang R, Zhao Y, Yao J, Li W, et al. 2023. Identifying QTL and candidate genes for prolificacy in maize. The Crop Journal 11(2):531−39 doi: 10.1016/j.cj.2022.08.007 |
[30] |
Tian J, Wang C, Xia J, Wu L, Xu G, et al. 2019. Teosinte ligule allele narrows plant architecture and enhances high-density maize yields. Science 365:658−64 doi: 10.1126/science.aax5482 |
[31] |
Strable J, Wallace JG, Unger-Wallace E, Briggs S, Bradbury PJ, et al. 2017. Maize YABBY genes drooping leaf1 and drooping leaf2 regulate plant architecture. The Plant Cell 29:1622−41 doi: 10.1105/tpc.16.00477 |
[32] |
Moreno MA, Harper LC, Krueger RW, Dellaporta SL, Freeling M. 1997. liguleless1 encodes a nuclear-localized protein required for induction of ligules and auricles during maize leaf organogenesis. Genes & Development 11:616−28 doi: 10.1101/gad.11.5.616 |
[33] |
Kong D, Wang B, Wang H. 2020. UPA2 and ZmRAVL1: Promising targets of genetic improvement of maize plant architecture. Journal of Integrative Plant Biology 62:394−97 doi: 10.1111/jipb.12873 |
[34] |
Moose SP, Sisco PH. 1994. Glossy15 controls the epidermal juvenile-to-adult phase transition in maize. The Plant Cell 6:1343−55 doi: 10.1105/tpc.6.10.1343 |
[35] |
Xu DY, Wang XF, Huang C, Xu GH, Liang YM, et al. 2017. Glossy15 plays an important role in the divergence of the vegetative transition between maize and its progenitor, teosinte. Molecular Plant 10:1579−83 doi: 10.1016/j.molp.2017.09.016 |
[36] |
Dong Z, Li W, Unger-Wallace E, Yang J, Vollbrecht E, et al. 2017. Ideal crop plant architecture is mediated bytassels replace upper ears1, a BTB/POZ ankyrin repeat gene directly targeted by TEOSINTE BRANCHED1. PNAS 114:8656−64 doi: 10.1073/pnas.1714960114 |
[37] |
Sigmon B, Vollbrecht E. 2010. Evidence of selection at the ramosa1 locus during maize domestication. Molecular Ecology 19(7):1296−311 doi: 10.1111/j.1365-294X.2010.04562.x |
[38] |
Vollbrecht E, Springer PS, Goh L, Buckler ES IV, Martienssen R. 2005. Architecture of floral branch systems in maize and related grasses. Nature 436:1119−26 doi: 10.1038/nature03892 |
[39] |
Wills DM, Fang Z, York AM, Holland JB, Doebley JF. 2018. Defining the role of the MADS-Box gene, Zea Agamous-like1, a target of selection during maize domestication. Journal of Heredity 109:333−38 doi: 10.1093/jhered/esx073 |
[40] |
Bomblies K, Wang RL, Ambrose BA, Schmidt RJ, Meeley RB, et al. 2003. Duplicate FLORICAULA/LEAFY homologs zfl1 and zfl2 control inflorescence architecture and flower patterning in maize. Development 130:2385−95 doi: 10.1242/dev.00457 |
[41] |
Bomblies K, Doebley JF. 2006. Pleiotropic effects of the duplicate maize FLORICAULA/LEAFY genes zfl1 and zfl2 on traits under selection during maize domestication. Genetics 172:519−31 doi: 10.1534/genetics.105.048595 |
[42] |
McSteen P, Malcomber S, Skirpan A, Lunde C, Wu X, et al. 2007. barren inflorescence2 encodes a co-ortholog of the PINOID serine/threonine kinase and is required for organogenesis during inflorescence and vegetative development in maize. Plant Physiology 144(2):1000−11 doi: 10.1104/pp.107.098558 |
[43] |
Xu G, Wang X, Huang C, Xu D, Li D, et al. 2017. Complex genetic architecture underlies maize tassel domestication. New Phytologist 214:852−64 doi: 10.1111/nph.14400 |
[44] |
Chuck GS, Brown PJ, Meeley R, Hake S. 2014. Maize SBP-box transcription factors unbranched2 and unbranched3 affect yield traits by regulating the rate of lateral primordia initiation. PNAS 111:18775−80 doi: 10.1073/pnas.1407401112 |
[45] |
Du Y, Liu L, Li M, Fang S, Shen X, et al. 2017. UNBRANCHED3 regulates branching by modulating cytokinin biosynthesis and signaling in maize and rice. New Phytologist 214:721−33 doi: 10.1111/nph.14391 |
[46] |
Liu L, Du Y, Shen X, Li M, Sun W, et al. 2015. KRN4 controls quantitative variation in maize kernel row number. PLoS Genetics 11(11):e1005670 doi: 10.1371/journal.pgen.1005670 |
[47] |
Debernardi JM, Lin H, Chuck G, Faris JD, Dubcovsky J. 2017. microRNA172 plays a crucial role in wheat spike morphogenesis and grain threshability. Development 144:1966−75 doi: 10.1242/dev.146399 |
[48] |
Wang J, Lin Z, Zhang X, Liu H, Zhou L, et al. 2019. krn1, a major quantitative trait locus for kernel row number in maize. New Phytologist 223:1634−46 doi: 10.1111/nph.15890 |
[49] |
Simons KJ, Fellers JP, Trick HN, Zhang Z, Tai YS, et al. 2006. Molecular characterization of the major wheat domestication gene Q. Genetics 172:547−55 doi: 10.1534/genetics.105.044727 |
[50] |
Chen W, Chen L, Zhang X, Yang N, Guo J, et al. 2022. Convergent selection of a WD40 protein that enhances grain yield in maize and rice. Science 375(6587):eabg7985 doi: 10.1126/science.abg7985 |
[51] |
Raihan MS, Liu J, Huang J, Guo H, Pan Q, et al. 2016. Multi-environment QTL analysis of grain morphology traits and fine mapping of a kernel-width QTL in Zheng58 × SK maize population. Theoretical and Applied Genetics 129:1465−77 doi: 10.1007/s00122-016-2717-z |
[52] |
Yang N, Liu J, Gao Q, Gui S, Chen L, et al. 2019. Genome assembly of a tropical maize inbred line provides insights into structural variation and crop improvement. Nature Genetics 51:1052−59 doi: 10.1038/s41588-019-0427-6 |
[53] |
Chen L, Li YX, Li C, Shi Y, Song Y, et al. 2020. The retromer protein ZmVPS29 regulates maize kernel morphology likely through an auxin-dependent process(es). Plant Biotechnology Journal 18:1004−14 doi: 10.1111/pbi.13267 |
[54] |
Sosso D, Luo D, Li QB, Sasse J, Yang J, et al. 2015. Seed filling in domesticated maize and rice depends on SWEET-mediated hexose transport. Nature Genetics 47:1489−93 doi: 10.1038/ng.3422 |
[55] |
Wang Q, Liao Z, Zhu C, Gou X, Liu Y, et al. 2022. Teosinte confers specific alleles and yield potential to maize improvement. Theoretical and Applied Genetics 135:3545−62 doi: 10.1007/s00122-022-04199-5 |
[56] |
Chen Q, Yang CJ, York AM, Xue W, Daskalska LL, et al. 2019. TeoNAM: A nested association mapping population for domestication and agronomic trait analysis in maize. Genetics 213:1065−78 doi: 10.1534/genetics.119.302594 |
[57] |
Lin Z, Li X, Shannon LM, Yeh CT, Wang ML, et al. 2012. Parallel domestication of the Shattering1 genes in cereals. Nature Genetics 44:720−24 doi: 10.1038/ng.2281 |
[58] |
Liu H, Fang X, Zhou L, Li Y, Zhu C, et al. 2022. Transposon insertion drove the loss of natural seed shattering during foxtail millet domestication. Molecular Biology and Evolution 39(6):msac078 doi: 10.1093/molbev/msac078 |
[59] |
Whitt SR, Wilson LM, Tenaillon MI, Gaut BS, Buckler ES IV. 2002. Genetic diversity and selection in the maize starch pathway. PNAS 99:12959−62 doi: 10.1073/pnas.202476999 |
[60] |
Palaisa K, Morgante M, Tingey S, Rafalski A. 2004. Long-range patterns of diversity and linkage disequilibrium surrounding the maize Y1 gene are indicative of an asymmetric selective sweep. PNAS 101:9885−90 doi: 10.1073/pnas.0307839101 |
[61] |
Karn A, Gillman JD, Flint-Garcia SA. 2017. Genetic analysis of teosinte alleles for kernel composition traits in maize. G3 Genes|Genomes|Genetics 7:1157−64 doi: 10.1534/g3.117.039529 |
[62] |
Fan L, Bao J, Wang Y, Yao J, Gui Y, et al. 2009. Post-domestication selection in the maize starch pathway. PLoS One 4:e7612 doi: 10.1371/journal.pone.0007612 |
[63] |
Huang Y, Wang H, Zhu Y, Huang X, Li S, et al. 2022. THP9 enhances seed protein content and nitrogen-use efficiency in maize. Nature 612:292−300 doi: 10.1038/s41586-022-05441-2 |
[64] |
de Lange ES, Balmer D, Mauch-Mani B, Turlings TCJ. 2014. Insect and pathogen attack and resistance in maize and its wild ancestors, the teosintes. New Phytologist 204:329−41 doi: 10.1111/nph.13005 |
[65] |
Lennon JR, Krakowsky M, Goodman M, Flint-Garcia S, Balint-Kurti PJ. 2016. Identification of alleles conferring resistance to gray leaf spot in maize derived from its wild progenitor species teosinte. Crop Science 56:209−18 doi: 10.2135/cropsci2014.07.0468 |
[66] |
Lennon JR, Krakowsky M, Goodman M, Flint-Garcia S, Balint-Kurti PJ. 2017. Identification of teosinte alleles for resistance to southern leaf blight in near isogenic maize lines. Crop Science 57:1973−83 doi: 10.2135/cropsci2016.12.0979 |
[67] |
Mano Y, Omori F. 2007. Breeding for flooding tolerant maize using "teosinte" as a germplasm resource. Plant Root 1:17−21 doi: 10.3117/plantroot.1.17 |
[68] |
Feng X, Xiong H, Zheng D, Xin X, Zhang X, et al. 2022. Identification of Fusarium verticillioides resistance alleles in three maize populations with teosinte gene introgression. Frontiers in Plant Science 13:942397 doi: 10.3389/fpls.2022.942397 |
[69] |
Wang H, Hou J, Ye P, Hu L, Huang J, et al. 2021. A teosinte-derived allele of a MYB transcription repressor confers multiple disease resistance in maize. Molecular Plant 14:1846−63 doi: 10.1016/j.molp.2021.07.008 |
[70] |
Zhang M, Li Y, Liang X, Lu M, Lai J, et al. 2023. A teosinte-derived allele of an HKT1 family sodium transporter improves salt tolerance in maize. Plant Biotechnology Journal 21(1):97−108 doi: 10.1111/pbi.13927 |
[71] |
Gao H, Cui J, Liu S, Wang S, Lian Y, et al. 2022. Natural variations of ZmSRO1d modulate the trade-off between drought resistance and yield by affecting ZmRBOHC-mediated stomatal ROS production in maize. Molecular Plant 15:1558−74 doi: 10.1016/j.molp.2022.08.009 |
[72] |
Hung HY, Shannon LM, Tian F, Bradbury PJ, Chen C, et al. 2012. ZmCCT and the genetic basis of day-length adaptation underlying the postdomestication spread of maize. PNAS 109:1913−18 doi: 10.1073/pnas.1117158109 |
[73] |
Lazakis CM, Coneva V, Colasanti J. 2011. ZCN8 encodes a potential orthologue of Arabidopsis FT florigen that integrates both endogenous and photoperiod flowering signals in maize. Journal of Experimental Botany 62:4833−42 doi: 10.1093/jxb/err129 |
[74] |
Guo L, Wang X, Zhao M, Huang C, Li C, et al. 2018. Stepwise cis-regulatory changes in ZCN8 contribute to maize flowering-time adaptation. Current Biology 28:3005−3015.E4 doi: 10.1016/j.cub.2018.07.029 |
[75] |
Sun H, Wang C, Chen X, Liu H, Huang Y, et al. 2020. dlf1 promotes floral transition by directly activating ZmMADS4 and ZmMADS67 in the maize shoot apex. New Phytologist 228:1386−400 doi: 10.1111/nph.16772 |
[76] |
Liang Y, Liu Q, Wang X, Huang C, Xu G, et al. 2019. ZmMADS69 functions as a flowering activator through the ZmRap2.7-ZCN8 regulatory module and contributes to maize flowering time adaptation. New Phytologist 221:2335−47 doi: 10.1111/nph.15512 |
[77] |
Salvi S, Sponza G, Morgante M, Tomes D, Niu X, et al. 2007. Conserved noncoding genomic sequences associated with a flowering-time quantitative trait locus in maize. PNAS 104:11376−81 doi: 10.1073/pnas.0704145104 |
[78] |
Ducrocq S, Madur D, Veyrieras JB, Camus-Kulandaivelu L, Kloiber-Maitz M, et al. 2008. Key impact of Vgt1 on flowering time adaptation in maize: evidence from association mapping and ecogeographical information. Genetics 178:2433−37 doi: 10.1534/genetics.107.084830 |
[79] |
Castelletti S, Tuberosa R, Pindo M, Salvi S. 2014. A MITE transposon insertion is associated with differential methylation at the maize flowering time QTL Vgt1. G3 Genes|Genomes|Genetics 4:805−12 doi: 10.1534/g3.114.010686 |
[80] |
Xue W, Xing Y, Weng X, Zhao Y, Tang W, et al. 2008. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nature Genetics 40:761−67 doi: 10.1038/ng.143 |
[81] |
Yang Q, Li Z, Li W, Ku L, Wang C, et al. 2013. CACTA-like transposable element in ZmCCT attenuated photoperiod sensitivity and accelerated the postdomestication spread of maize. PNAS 110:16969−74 doi: 10.1073/pnas.1310949110 |
[82] |
Huang C, Sun H, Xu D, Chen Q, Liang Y, et al. 2018. ZmCCT9 enhances maize adaptation to higher latitudes. PNAS 115:E334−E341 doi: 10.1073/pnas.1718058115 |
[83] |
Zhao Y, Zhao B, Xie Y, Jia H, Li Y, et al. 2023. The evening complex promotes maize flowering and adaptation to temperate regions. The Plant Cell 35:369−89 doi: 10.1093/plcell/koac296 |
[84] |
Barnes A C, Rodríguez-Zapata F, Juárez-Núñez K A, Gates D J, Janzen G M, Kur A et al. 2022. An adaptive teosinte mexicana introgression modulates phosphatidylcholine levels and is associated with maize flowering time. PNAS 119(27):e2100036119 doi: 10.1073/pnas.2100036119 |
[85] |
Hufford MB, Lubinksy P, Pyhäjärvi T, Devengenzo MT, Ellstrand NC, et al. 2013. The genomic signature of crop-wild introgression in maize. PLoS Genetics 9:e1003477 doi: 10.1371/journal.pgen.1003477 |
[86] |
Yang N, Xu XW, Wang RR, Peng WL, Cai L, et al. 2017. Contributions of Zea mays subspecies mexicana haplotypes to modern maize. Nature Communications 8:1874 doi: 10.1038/s41467-017-02063-5 |
[87] |
Calfee E, Gates D, Lorant A, Perkins MT, Coop G, et al. 2021. Selective sorting of ancestral introgression in maize and teosinte along an elevational cline. PLoS Genetics 17:e1009810 doi: 10.1371/journal.pgen.1009810 |
[88] |
Chen L, Luo J, Jin M, Yang N, Liu X, et al. 2022. Genome sequencing reveals evidence of adaptive variation in the genus Zea. Nature Genetics 54:1736−45 doi: 10.1038/s41588-022-01184-y |
[89] |
Duvick DN. 2005. Genetic progress in yield of United States maize (Zea mays L.). Maydica 50:193−202 |
[90] |
Mansfield BD, Mumm RH. 2014. Survey of plant density tolerance in U. S. maize germplasm. Crop Science 54:157−73 doi: 10.2135/cropsci2013.04.0252 |
[91] |
Wang B, Lin Z, Li X, Zhao Y, Zhao B, et al. 2020. Genome-wide selection and genetic improvement during modern maize breeding. Nature Genetics 52:565−71 doi: 10.1038/s41588-020-0616-3 |
[92] |
Li P, Wei J, Wang H, Fang Y, Yin S, et al. 2019. Natural variation and domestication selection of ZmPGP1 affects plant architecture and yield-related traits in maize. Genes 10:664 doi: 10.3390/genes10090664 |
[93] |
Wei L, Zhang X, Zhang Z, Liu H, Lin Z. 2018. A new allele of the Brachytic2 gene in maize can efficiently modify plant architecture. Heredity 121:75−86 doi: 10.1038/s41437-018-0056-3 |
[94] |
Smith H, Whitelam GC. 1997. The shade avoidance syndrome: multiple responses mediated by multiple phytochromes. Plant, Cell & Environment 20:840−44 doi: 10.1046/j.1365-3040.1997.d01-104.x |
[95] |
Kebrom TH, Brutnell TP. 2007. The molecular analysis of the shade avoidance syndrome in the grasses has begun. Journal of Experimental Botany 58 12:3079−89 doi: 10.1093/jxb/erm205 |
[96] |
Cui H, Camberato JJ, Jin L, Zhang J. 2015. Effects of shading on spike differentiation and grain yield formation of summer maize in the field. International Journal of Biometeorology 59:1189−200 doi: 10.1007/s00484-014-0930-5 |
[97] |
Zhang X, Liu H, Ma X, Zhou G, Ruan H, et al. 2022. Genome-wide association study and metabolic pathway prediction of barrenness in maize as a response to high planting density. Journal of Integrative Agriculture 21(12):3514−23 doi: 10.1016/j.jia.2022.08.089 |
[98] |
Liu Y, Jafari F, Wang H. 2021. Integration of light and hormone signaling pathways in the regulation of plant shade avoidance syndrome. aBIOTECH 2:131−45 doi: 10.1007/s42994-021-00038-1 |
[99] |
Xie Y, Liu Y, Wang H, Ma X, Wang B, et al. 2017. Phytochrome-interacting factors directly suppress MIR156 expression to enhance shade-avoidance syndrome in Arabidopsis. Nature Communications 8:348 doi: 10.1038/s41467-017-00404-y |
[100] |
Wei H, Zhao Y, Xie Y, Wang H. 2018. Exploiting SPL genes to improve maize plant architecture tailored for high-density planting. Journal of Experimental Botany 69:4675−88 doi: 10.1093/jxb/ery258 |
[101] |
Sheehan MJ, Kennedy LM, Costich DE, Brutnell TP. 2007. Subfunctionalization of PhyB1 and PhyB2 in the control of seedling and mature plant traits in maize. The Plant Journal 49(2):338−53 doi: 10.1111/j.1365-313X.2006.02962.x |
[102] |
Wu G, Zhao Y, Shen R, Wang B, Xie Y, et al. 2019. Characterization of maize phytochrome-interacting factors in light signaling and photomorphogenesis. Plant Physiology 181 2:789−803 doi: 10.1104/pp.19.00239 |
[103] |
Li Q, Wu G, Zhao Y, Wang B, Zhao B, et al. 2020. CRISPR/Cas9-mediated knockout and overexpression studies reveal a role of maize phytochrome C in regulating flowering time and plant height. Plant Biotechnology Journal 18:2520−32 doi: 10.1111/pbi.13429 |
[104] |
Du Y, Liu L, Peng Y, Li M, Li Y, et al. 2020. UNBRANCHED3 expression and Inflorescence development is mediated by UNBRANCHED2 and the distal enhancer, KRN4, in maize. PLoS Genetics 16:e1008764 doi: 10.1371/journal.pgen.1008764 |
[105] |
Zhao X, Liu H, Wei X, Wu L, Cheng F, et al. 2014. Promoter region characterization of ZmPhyB2 associated with the photoperiod-dependent floral transition in maize (Zea mays L.). Molecular Breeding 34:1413−22 doi: 10.1007/s11032-014-0125-0 |
[106] |
Kong D, Li C, Xue W, Wei H, Ding H, et al. 2023. UB2/UB3/TSH4-anchored transcriptional networks regulate early maize inflorescence development in response to simulated shade. The Plant Cell 35(2):717−37 doi: 10.1093/plcell/koac352 |
[107] |
Shull GH. 1908. The composition of a field of maize. Journal of Heredity Volume os-4:296−301 doi: 10.1093/jhered/os-4.1.296 |
[108] |
East EM, Jones DF. 1918. Inbreeding and Outbreeding. J. B. Lippincott Co., Philadelphia, PA. pp 140. |
[109] |
Jones, DF. 1918. The effect of inbreeding and crossbreeding upon development. PNAS 4(8):246−50 doi: 10.1073/pnas.4.8.246 |
[110] |
Melchinger AE, Gumber RK. 1998. Overview of heterosis and heterotic groups in agronomic crops. In Concepts and Breeding of Heterosis in Crop Plants, eds. Larnkey KR, Staub JE. Madison, WI, USA: Crop Science Society of America. pp. 29−44 |
[111] |
Reif JC, Hailauer AR, Melchinger AE. 2005. Heterosis and heterotic patterns in maize. Maydica 50:215−23 |
[112] |
Tracy WF, Chandler MA. 2006. The historical and biological basis of the concept of heterotic patterns in corn belt Dent maize. In Plant Breeding: The Arnel R. Hallauer International Symposium, eds. Lamkey KR, Lee M. pp. 219−33. https://doi.org/10.1002/9780470752708.ch16 |
[113] |
Li Y, Li Y, Ma X, Liu C, Liu Z, et al. 2014. Contributions of parental inbreds and heterosis to morphology and yield of single-cross maize hybrids in China. Crop Science 54:76−88 doi: 10.2135/cropsci2013.02.0077 |
[114] |
van Heerwaarden J, Hufford MB, Ross-Ibarra J. 2012. Historical genomics of North American maize. PNAS 109:12420−25 doi: 10.1073/pnas.1209275109 |
[115] |
Gage JL, White MR, Edwards JW, Kaeppler S, de Leon N. 2018. Selection signatures underlying dramatic male inflorescence transformation during modern hybrid maize breeding. Genetics 210:1125−38 doi: 10.1534/genetics.118.301487 |
[116] |
Romay MC, Millard MJ, Glaubitz JC, Peiffer JA, Swarts KL, et al. 2013. Comprehensive genotyping of the USA national maize inbred seed bank. Genome Biology 14:R55 doi: 10.1186/gb-2013-14-6-r55 |
[117] |
Reif JC, Melchinger AE, Xia X, Warburton ML, Hoisington DA, et al. 2003. Genetic distance based on simple sequence repeats and heterosis in tropical maize populations. Crop Science 43:1275−82 doi: 10.2135/cropsci2003.1275 |
[118] |
Ho JC, Kresovich S, Lamkey KR. 2005. Extent and distribution of genetic variation in U. S. maize: Historically important lines and their open-pollinated dent and flint progenitors. Crop Science 45:1891−900 doi: 10.2135/cropsci2003.0494 |
[119] |
Feng L, Sebastian S, Smith S, Cooper M. 2006. Temporal trends in SSR allele frequencies associated with long-term selection for yield of maize. Maydica 51:293−300 |
[120] |
Technow F, Schrag TA, Schipprack W, Bauer E, Simianer H, et al. 2014. Genome properties and prospects of genomic prediction of hybrid performance in a breeding program of maize. Genetics 197:1343−55 doi: 10.1534/genetics.114.165860 |
[121] |
Li C, Guan H, Jing X, Li Y, Wang B, et al. 2022. Genomic insights into historical improvement of heterotic groups during modern hybrid maize breeding. Nature Plants 8:750−63 doi: 10.1038/s41477-022-01190-2 |
[122] |
Wallace JG, Rodgers-Melnick E, Buckler ES. 2018. On the road to breeding 4.0: unraveling the good, the bad, and the boring of crop quantitative genomics. Annual Review of Genetics 52:421−44 doi: 10.1146/annurev-genet-120116-024846 |
[123] |
Jiang S, Cheng Q, Yan J, Fu R, Wang X. 2020. Genome optimization for improvement of maize breeding. Theoretical and Applied Genetics 133:1491−502 doi: 10.1007/s00122-019-03493-z |
[124] |
Schnable PS, Springer NM. 2013. Progress toward understanding heterosis in crop plants. Annual Review of Plant Biology 64:71−88 doi: 10.1146/annurev-arplant-042110-103827 |
[125] |
Wang B, Hou M, Shi J, Ku L, Song W, et al. 2023. De novo genome assembly and analyses of 12 founder inbred lines provide insights into maize heterosis. Nature Genetics 55(2):312−23 doi: 10.1038/s41588-022-01283-w |
[126] |
Liu H, Wang Q, Chen M, Ding Y, Yang X, et al. 2020. Genome-wide identification and analysis of heterotic loci in three maize hybrids. Plant Biotechnology Journal 18(1):185−94 doi: 10.1111/pbi.13186 |
[127] |
Bayer. 2022. How smarter corn production could help sustainably weather climate change. www.bayer.com/en/news-stories/how-thinking-short-could-help-sustainably-weather-climate-change |