-
Teosintes is known to confer superior disease resistance and adaptation to extreme environments (such as low phosphorus and high salinity). de Lange et al. and Lennon et al.[64−66] reported the identification of teosinte-derived QTLs for resistance to gray leaf spot and southern leaf blight in maize. Mano & Omori reported that teosinte-derived QTLs could confer flooding tolerance[67]. Feng et al.[68] identified four teosinte-derived QTL that could improve resistance to Fusarium ear rot (FER) caused by Fusarium verticillioides. Recently, Wang et al.[69] reported a MYB transcription repressor of teosinte origin (ZmMM1) that confers resistance to northern leaf blight (NLB), southern corn rust (SCR) and gray leaf spot (GLS) in maize, while Zhang et al.[70] reported the identification of an elite allele of SNP947-G ZmHKT1 (encoding a sodium transporter) derived from teosinte can effectively improve salt tolerance via exporting Na+ from the above-ground plant parts. Gao et al.[71] reported that ZmSRO1d-R can regulate the balance between crop yield and drought resistance by increasing the guard cells' ROS level, and it underwent selection during maize domestication and breeding. These studies argue for the need of putting more efforts to tapping into the genetic resources hidden in the maize’s wild relatives. The so far cloned genes involved in maize domestication are summarized in Table 1. Notably, the enrichment of transcription factors in the cloned domestication genes highlights a crucial role of transcriptional re-wiring in maize domestication.
Table 1. Key domestication genes cloned in maize.
Gene Phenotype Functional annotation Selection type Causative change References tb1 Plant architecture TCP transcription factor Increased expression ~60 kb upstream of tb1 enhancing expression [18−22] tga1 Hardened fruitcase SBP-domain transcription factor Protein function A SNP in exon (K-N) [25, 26] gt1 Plant architecture Homeodomain leucine zipper Increased expression prol1.1 in 2.7 kb upstream of the promoter region increasing expression [27, 28] Zm00001d020683 Plant architecture INDETERMINATE DOMAIN transcription factor Protein function Unknown [29] UPA1 Leaf angle Brassinosteroid C-6 oxidase1 Protein function Unknown [30] UPA2 Leaf angle B3 domain transcription factor Increased expression A 2 bp indel in 9.5 kb upstream of ZmRALV1 [30] Gl15 Vegetative phase change AP2-like transcription factor Altered expression SNP2154: a stop codon (G-A) [34, 35] tru1 Plant architecture BTB/POZ ankyrin repeat protein Increased expression Unknown [36] ra1 Inflorescence architecture Transcription factor Altered expression Unknown [37, 38] zfl Plant architecture Transcription factor Altered expression Unknown [40, 41] UB3 Kernel row number SBP-box transcription factor Altered expression A TE in the intergenic region; [44−46] SNP (S35): third exon of UB3
(A-G) increasing expression of UB3 and KRNKRN1/ids1/Ts6 Kernel row number AP2 Transcription factor Increased expression Unknown [47, 48] KRN2 Kernel row number WD40 domain Decreased expression Unknown [50] qHKW1 Kernel row weight CLV1/BAM-related receptor kinase-like protein Increased expression 8.9 kb insertion upstream of HKW [51, 52] ZmVPS29 Kernel morphology A retromer complex component Protein function Two SNPs (S-1830 and S-1558) in the promoter of ZmVPS29 [53] ZmSWEET4c Seed filling Hexose transporter Protein function Unknown [54] ZmSh1 Shattering A zinc finger and YABBY transcription factor Protein function Unknown [57, 58] Thp9 Nutrition quality Asparagine synthetase 4 enzyme Protein function A deletion in 10th intron of Thp9 reducing NUE and protein content [63] ZmMM1 Biotic stress MYB Transcription repressor Protein function Unknown [69] ZmHKT1 Abiotic stress A sodium transporter Protein function SNP947-G: a nonsynonymous variation increasing salt tolerance [70] ZmSRO1d-R Drought resistance and production PolyADP-ribose polymerase and C-terminal RST domain Protein function Three non-synonymous variants: SNP131 (A44G), SNP134 (V45A) and InDel433 [71] -
After its domestication from its wild progenitor teosinte in southwestern Mexico in the tropics, maize has now become the mostly cultivated crop worldwide owing to its extensive range expansion and adaptation to diverse environmental conditions (such as temperature and day length). A key prerequisite for the spread of maize from tropical to temperate regions is reduced photoperiod sensitivity[72]. It was recently shown that CENTRORADIALIS 8 (ZCN8), an Flowering Locus T (FT) homologue, underlies a major quantitative trait locus (qDTA8) for flowering time[73]. Interestingly, it has been shown that step-wise cis-regulatory changes occurred in ZCN8 during maize domestication and post-domestication expansion. SNP-1245 is a target of selection during early maize domestication for latitudinal adaptation, and after its fixation, selection of InDel-2339 (most likely introgressed from Zea mays ssp. Mexicana) likely contributed to the spread of maize from tropical to temperate regions[74].
ZCN8 interacts with the basic leucine zipper transcription factor DLF1 (Delayed flowering 1) to form the florigen activation complex (FAC) in maize. Interestingly, DFL1 was found to underlie qLB7-1, a flowering time QTL identified in a BC2S3 population of maize-teosinte. Moreover, it was shown that DLF1 directly activates ZmMADS4 and ZmMADS67 in the shoot apex to promote floral transition[75]. In addition, ZmMADS69 underlies the flowering time QTL qDTA3-2 and encodes a MADS-box transcription factor. It acts to inhibit the expression of ZmRap2.7, thereby relieving its repression on ZCN8 expression and causing earlier flowering. Population genetic analyses showed that DLF1, ZmMADS67 and ZmMADS69 are all targets of artificial selection and likely contributed to the spread of maize from the tropics to temperate zones[75, 76].
In addition, a few genes regulating the photoperiod pathway and contributing to the acclimation of maize to higher latitudes in North America have been cloned, including Vgt1, ZmCCT (also named ZmCCT10), ZmCCT9 and ZmELF3.1. Vgt1 was shown to act as a cis-regulatory element of ZmRap2.7, and a MITE TE located ~70 kb upstream of Vgt1 was found to be significantly associated with flowering time and was a major target for selection during the expansion of maize to the temperate and high-latitude regions[77−79]. ZmCCT is another major flowering-time QTL and it encodes a CCT-domain protein homologous to rice Ghd7[80]. Its causal variation is a 5122-bp CACTA-like TE inserted ~2.5 kb upstream of ZmCCT10[72, 81]. ZmCCT9 was identified a QTL for days to anthesis (qDTA9). A Harbinger-like TE located ~57 kb upstream of ZmCCT9 showed the most significant association with DTA and thus believed to be the causal variation[82]. Notably, the CATCA-like TE of ZmCCT10 and the Harbinger-like TE of ZmCCT9 are not observed in surveyed teosinte accessions, hinting that they are de novo mutations occurred after the initial domestication of maize[72, 82]. ZmELF3.1 was shown to underlie the flowering time QTL qFT3_218. It was demonstrated that ZmELF3.1 and its homolog ZmELF3.2 can form the maize Evening Complex (EC) through physically interacting with ZmELF4.1/ZmELF4.2, and ZmLUX1/ZmLUX2. Knockout mutants of Zmelf3.1 and Zmelf3.1/3.2 double mutant presented delayed flowering under both long-day and short-day conditions. It was further shown that the maize EC promote flowering through repressing the expression of several known flowering suppressor genes (e.g., ZmCCT9, ZmCCT10, ZmCOL3, ZmPRR37a and ZmPRR73), and consequently alleviating their inhibition on several maize florigen genes (ZCN8, ZCN7 and ZCN12). Insertion of two closely linked retrotransposon elements upstream of the ZmELF3.1 coding region increases the expression of ZmELF3.1, thus promoting flowering[83]. The increase frequencies of the causal TEs in Vgt1, ZmCCT10, ZmCCT9 and ZmELF3.1 in temperate maize compared to tropical maize highlight a critical role of these genes during the spread and adaptation of maize to higher latitudinal temperate regions through promoting flowering under long-day conditions[72,81−83].
In addition, Barnes et al.[84] recently showed that the High Phosphatidyl Choline 1 (HPC1) gene, which encodes a phospholipase A1 enzyme, contributed to the spread of the initially domesticated maize from the warm Mexican southwest to the highlands of Mexico and South America by modulating phosphatidylcholine levels. The Mexicana-derived allele harbors a polymorphism and impaired protein function, leading to accelerated flowering and better fitness in highlands.
Besides the above characterized QTLs and genes, additional genetic elements likely also contributed to the pre-Columbia spreading of maize. Hufford et al.[85] proposed that incorporation of mexicana alleles into maize may helped the expansion of maize to the highlands of central Mexico based on detection of bi-directional gene flow between maize and Mexicana. This proposal was supported by a recent study showing evidence of introgression for over 10% of the maize genome from the mexicana genome[86]. Consistently, Calfee et al.[87] found that sequences of mexicana ancestry increases in high-elevation maize populations, supporting the notion that introgression from mexicana facilitating adaptation of maize to the highland environment. Moreover, a recent study examined the genome-wide genetic diversity of the Zea genus and showed that dozens of flowering-related genes (such as GI, BAS1 and PRR7) are associated with high-latitude adaptation[88]. These studies together demonstrate unequivocally that introgression of genes from Mexicana and selection of genes in the photoperiod pathway contributed to the spread of maize to the temperate regions.
The so far cloned genes involved in pre-Columbia spread of maize are summarized in Fig. 2 and Table 2.
Figure 2.
Genes involved in Pre-Columbia spread of maize to higher latitudes and the temperate regions. The production of world maize in 2020 is presented by the green bar in the map from Ritchie et al. (2023). Ritchie H, Rosado P, and Roser M. 2023. "Agricultural Production". Published online at OurWorldInData.org. Retrieved from: 'https:ourowrldindata.org/agricultural-production' [online Resource].
Table 2. Flowering time related genes contributing to Pre-Columbia spread of maize.
Gene Functional annotation Causative change References ZCN8 Florigen protein SNP-1245 and Indel-2339 in promoter [73, 74] DLF1 Basic leucine zipper transcription factor Unknown [75] ZmMADS69 MADS-box transcription factor Unknown [76] ZmRap2.7 AP2-like transcription factor MITE TE inserted ~70 kb upstream [77−79] ZmCCT CCT-domain protein 5122-bp CACTA-like TE inserted ~2.5 kb upstream [72,81] ZmCCT9 CCT transcription factor A harbinger-like element at 57 kb upstream [82] ZmELF3.1 Unknown wo retrotransposons in the promote [84] HPC1 Phospholipase A1 enzym Unknown [83] ZmPRR7 Unknown Unknown [88] ZmCOL9 CO-like-transcription factor Unknown [88] -
Shade avoidance syndrome (SAS) is a set of adaptive responses triggered when plants sense a reduction in the red to far-red light (R:FR) ratio under high planting density conditions, commonly manifested by increased plant height (and thus more prone to lodging), suppressed branching, accelerated flowering and reduced resistance to pathogens and pests[94, 95]. High-density planting could also cause extended anthesis-silking interval (ASI), reduced tassel size and smaller ear, and even barrenness[96, 97]. Thus, breeding of maize cultivars of attenuated SAS is a priority for adaptation to increased planting density.
Extensive studies have been performed in Arabidopsis to dissect the regulatory mechanism of SAS and this topic has been recently extensively reviewed[98]. We recently showed that a major signaling mechanism regulating SAS in Arabidopsis is the phytochrome-PIFs module regulates the miR156-SPL module-mediated aging pathway[99]. We proposed that in maize there might be a similar phytochrome-PIFs-miR156-SPL regulatory pathway regulating SAS and that the maize SPL genes could be exploited as valuable targets for genetic improvement of plant architecture tailored for high-density planting[100].
In support of this, it has been shown that the ZmphyBs (ZmphyB1 and ZmphyB2), ZmphyCs (ZmphyC1 and ZmphyC2) and ZmPIFs are involved in regulating SAS in maize[101−103]. In addition, earlier studies have shown that as direct targets of miR156s, three homologous SPL transcription factors, UB2, UB3 and TSH4, regulate multiple agronomic traits including vegetative tillering, plant height, tassel branch number and kernel row number[44, 104]. Moreover, it has been shown that ZmphyBs[101, 105] and ZmPIF3.1[91], ZmPIF4.1[102] and TSH4[91] are selective targets during modern maize breeding (Table 3).
Table 3. Selective genes underpinning genetic improvement during modern maize breeding.
Gene Phenotype Functional annotation Selection type Causative change References ZmPIF3.1 Plant height Basic helix-loop-helix transcription factor Increased expression Unknown [91] TSH4 Tassel branch number Transcription factor Altered expression Unknown [91] ZmPGP1 Plant architecture ATP binding cassette transporter Altered expression A 241 bp deletion in the last exon of ZmPGP1 [92, 93] PhyB2 Light signal Phytochrome B Altered expression A 10 bp deletion in the translation start site [101] ZmPIF4.1 Light signal Basic helix-loop-helix transcription factor Altered expression Unknown [102] ZmKOB1 Grain yield Glycotransferase-like protein Protein function Unknown [121] In a recent study to dissect the signaling process regulating inflorescence development in response to the shade signal, Kong et al.[106] compared the gene expression changes along the male and female inflorescence development under simulated shade treatments and normal light conditions, and identified a large set of genes that are co-regulated by developmental progression and simulated shade treatments. They found that these co-regulated genes are enriched in plant hormone signaling pathways and transcription factors. By network analyses, they found that UB2, UB3 and TSH4 act as a central regulatory node controlling maize inflorescence development in response to shade signal, and their loss-of-function mutants exhibit reduced sensitivity to simulated shade treatments. This study provides a valuable genetic source for mining and manipulating key shading-responsive genes for improved tassel and ear traits under high density planting conditions.
-
The ever-increasing worldwide population and anticipated climate deterioration pose a great challenge to global food security and call for more effective and precise breeding methods for crops. To accommodate the projected population increase in the next 30 years, it is estimated that cereal production needs to increase at least 70% by 2050 (FAO). As a staple cereal crop, breeding of maize cultivars that are not only high-yielding and with superior quality, but also resilient to environmental stresses, is essential to meet this demand. The recent advances in genome sequencing, genotyping and phenotyping technologies, generation of multi-omics data (including genomic, phenomic, epigenomic, transcriptomic, proteomic, and metabolomic data), creation of novel superior alleles by genome editing, development of more efficient double haploid technologies, integrating with machine learning and artificial intelligence are ushering the transition of maize breeding from the Breeding 3.0 stage (biological breeding) into the Breeding 4.0 stage (intelligent breeding)[122, 123]. However, several major challenges remain to be effectively tackled before such a transition could be implemented. First, most agronomic traits of maize are controlled by numerous small-effect QTL and complex genotype-environment interactions (G × E). Thus, elucidating the contribution of the abundant genetic variation in the maize population to phenotypic plasticity remains a major challenge in the post-genomic era of maize genetics and breeding. Secondly, most maize cultivars cultivated nowadays are hybrids that exhibit superior heterosis than their parental lines. Hybrid maize breeding involves the development of elite inbred lines with high general combining ability (GCA) and specific combining ability (SCA) that allows maximal exploitation of heterosis. Despite much effort to dissect the mechanisms of maize heterosis, the molecular basis of maize heterosis is still a debated topic[124−126]. Thirdly, only limited maize germplasm is amenable to genetic manipulation (genetic transformation, genome editing etc.), which significantly hinders the efficiency of genetic improvement. Development of efficient genotype-independent transformation procedure will greatly boost maize functional genomic research and breeding. Noteworthy, the Smart Corn System recently launched by Bayer is promised to revolutionize global corn production in the coming years. At the heart of the new system is short stature hybrid corn (~30%−40% shorter than traditional hybrids), which offers several advantages: sturdier stems and exceptional lodging resistance under higher planting densities (grow 20%−30% more plants per hectare), higher and more stable yield production per unit land area, easier management and application of plant protection products, better use of solar energy, water and other natural resources, and improved greenhouse gas footprint[127]. Indeed, a new age of maize green revolution is yet to come!
-
About this article
Cite this article
Zhang M, Kong D, Wang H. 2023. Genomic landscape of maize domestication and breeding improvement. Seed Biology 2:9 doi: 10.48130/SeedBio-2023-0009
Genomic landscape of maize domestication and breeding improvement
- Received: 20 January 2023
- Accepted: 22 May 2023
- Published online: 03 August 2023
Abstract: Maize (Zea mays ssp. mays) is the most productive crop worldwide now, and it is widely used as food, feed and raw materials for various industrial products. The continuous increase of maize yield is a testament of the success of plant breeding and modern agriculture. During domestication and historical breeding, humans has imposed strong selection on its morphological and physiological traits that benefit ecological adaptation, increase in yield and nutritional value, and harvesting. Recent advance in maize functional genomics studies has greatly deepened and expanded our understanding of the molecular and genetic bases of maize domestication and genetic improvement. In this article, we summarize the key traits and regulatory genes that underlie domestication and post-domestication genetic improvement of maize, and provide a forward outlook as to how the knowledge can be harnessed to accelerate future maize breeding.
-
Key words:
- Maize /
- Domestication /
- Improvement /
- Molecular bases /
- Genetic variants