[1]
|
Yuan Z, Persson S, Zhang D. 2020. Molecular and genetic pathways for optimizing spikelet development and grain yield. aBIOTECH 1:276−92 doi: 10.1007/s42994-020-00026-x
CrossRef Google Scholar
|
[2]
|
Zhang D, Yuan Z. 2014. Molecular control of grass inflorescence development. Annual Review of Plant Biology 65:553−78 doi: 10.1146/annurev-arplant-050213-040104
CrossRef Google Scholar
|
[3]
|
Zhang D, Yuan Z, An G, Dreni L, Hu J, Kater MM. 2013. Panicle development. In Genetics and Genomics of Rice. Plant Genetics and Genomics: Crops and Models, eds. Zhang Q, Wing RA. vol 5. New York: Springer. pp. 279−95. https://doi.org/10.1007/978-1-4614-7903-1_19
|
[4]
|
Theissen G. 2001. Development of floral organ identity: stories from the MADS house. Current Opinion in Plant Biology 4:75−85 doi: 10.1016/S1369-5266(00)00139-4
CrossRef Google Scholar
|
[5]
|
Pinyopich A, Ditta GS, Savidge B, Liljegren SJ, Baumann E, et al. 2003. Assessing the redundancy of MADS-box genes during carpel and ovule development. Nature 424:85−88 doi: 10.1038/nature01741
CrossRef Google Scholar
|
[6]
|
Gramzow L, Theissen G. 2010. A hitchhiker’s guide to the MADS world of plants. Genome Biology 11:214 doi: 10.1186/gb-2010-11-6-214
CrossRef Google Scholar
|
[7]
|
Chen L, Chu H, Yuan Z, Pan A, Liang W, et al. 2006. Isolation and genetic analysis for rice mutants treated with 60 Co γ-Ray. Journal of Xiamen University (Natural Science) 45(z1):82−85 doi: 10.3321/j.issn:0438-0479.2006.z1.021
CrossRef Google Scholar
|
[8]
|
Chu H, Qian Q, Liang W, Yin C, Tan H, et al. 2006. The FLORAL ORGAN NUMBER4 gene encoding a putative ortholog of Arabidopsis CLAVATA3 regulates apical meristem size in rice. Plant Physiology 142:1039−52 doi: 10.1104/pp.106.086736
CrossRef Google Scholar
|
[9]
|
Chu H, Liang W, Li J, Hong F, Wu Y, et al. 2013. A CLE-WOX signalling module regulates root meristem maintenance and vascular tissue development in rice. Journal of Experimental Botany 64:5359−69 doi: 10.1093/jxb/ert301
CrossRef Google Scholar
|
[10]
|
Xu W, Tao J, Chen M, Dreni L, Luo Z, et al. 2017. Interactions between FLORAL ORGAN NUMBER4 and floral homeotic genes in regulating rice flower development. Journal of Experimental Botany 68:483−98 doi: 10.1093/jxb/erw459
CrossRef Google Scholar
|
[11]
|
Ren D, Xu Q, Qiu Z, Cui Y, Zhou T, et al. 2019. FON4 prevents the multi-floret spikelet in rice. Plant Biotechnology Journal 17:1007−9 doi: 10.1111/pbi.13083
CrossRef Google Scholar
|
[12]
|
Li H, Liang W, Yin C, Zhu L, Zhang D. 2011. Genetic interaction of OsMADS3, DROOPING LEAF, and OsMADS13 in specifying rice floral organ identities and meristem determinacy. Plant Physiology 156:263−74 doi: 10.1104/pp.111.172080
CrossRef Google Scholar
|
[13]
|
Li H, Liang W, Hu Y, Zhu L, Yin C, et al. 2011. Rice MADS6 interacts with the floral homeotic genes SUPERWOMAN1, MADS3, MADS58, MADS13, and DROOPING LEAF in specifying floral organ identities and meristem fate. The Plant Cell 23:2536−52 doi: 10.1105/tpc.111.087262
CrossRef Google Scholar
|
[14]
|
Li H, Liang W, Jia R, Yin C, Zong J, et al. 2010. The AGL6-like gene OsMADS6 regulates floral organ and meristem identities in rice. Cell Research 20:299−313 doi: 10.1038/cr.2009.143
CrossRef Google Scholar
|
[15]
|
Li G, Kuijer HNJ, Yang X, Liu H, Shen C, et al. 2021. MADS1 maintains barley spike morphology at high ambient temperatures. Nature Plants 7:1093−107 doi: 10.1038/s41477-021-00957-3
CrossRef Google Scholar
|
[16]
|
Meng Q, Li X, Zhu W, Yang L, Liang W, et al. 2017. Regulatory network and genetic interactions established by OsMADS34 in rice inflorescence and spikelet morphogenesis. Journal of Integrative Plant Biology 59:693−707 doi: 10.1111/jipb.12594
CrossRef Google Scholar
|
[17]
|
Gao X, Liang W, Yin C, Ji S, Wang H, et al. 2010. The SEPALLATA-like gene OsMADS34 is required for rice inflorescence and spikelet development. Plant Physiology 153:728−40 doi: 10.1104/pp.110.156711
CrossRef Google Scholar
|
[18]
|
Wu D, Liang W, Zhu W, Chen M, Ferrándiz C, et al. 2018. Loss of LOFSEP transcription factor function converts spikelet to leaf-like structures in rice. Plant Physiology 176:1646−64 doi: 10.1104/pp.17.00704
CrossRef Google Scholar
|
[19]
|
Zhu W, Yang L, Wu D, Meng Q, Deng X, et al. 2022. Rice SEPALLATA genes OsMADS5 and OsMADS34 cooperate to limit inflorescence branching by repressing the TERMINAL FLOWER1-like gene RCN4. New Phytologist 233:1682−700 doi: 10.1111/nph.17855
CrossRef Google Scholar
|
[20]
|
Cai Q, Yuan Z, Chen M, Yin C, Luo Z, et al. 2014. Jasmonic acid regulates spikelet development in rice. Nature Communications 5:3476 doi: 10.1038/ncomms4476
CrossRef Google Scholar
|
[21]
|
You X, Zhu S, Zhang W, Zhang J, Wang C, et al. 2019. OsPEX5 regulates rice spikelet development through modulating jasmonic acid biosynthesis. New Phytologist 224:712−24 doi: 10.1111/nph.16037
CrossRef Google Scholar
|
[22]
|
Wang X, Chen Y, Liu S, Fu W, Zhuang Y, et al. 2023. Functional dissection of rice jasmonate receptors involved in development and defense. New Phytologist 238:2144−58 doi: 10.1111/nph.18860
CrossRef Google Scholar
|
[23]
|
Hu Y, Liang W, Yin C, Yang X, Ping B, et al. 2015. Interactions of OsMADS1 with Floral Homeotic Genes in Rice Flower Development. Molecular Plant 8:1366−84 doi: 10.1016/j.molp.2015.04.009
CrossRef Google Scholar
|
[24]
|
Yun D, Liang W, Dreni L, Yin C, Zhou Z, et al. 2013. OsMADS16 genetically interacts with OsMADS3 and OsMADS58 in specifying floral patterning in rice. Molecular Plant 6:743−56 doi: 10.1093/mp/sst003
CrossRef Google Scholar
|
[25]
|
Yoshida A, Suzaki T, Tanaka W, Hirano HY. 2009. The homeotic gene long sterile lemma (G1) specifies sterile lemma identity in the rice spikelet. PNAS 106:20103−8 doi: 10.1073/pnas.0907896106
CrossRef Google Scholar
|
[26]
|
Hong L, Qian Q, Zhu K, Tang D, Huang Z, et al. 2010. ELE restrains empty glumes from developing into lemmas. Journal of Genetics and Genomics 37:101−15 doi: 10.1016/S1673-8527(09)60029-1
CrossRef Google Scholar
|
[27]
|
Zhang T, Li Y, Ma L, Sang X, Ling Y, et al. 2017. LATERAL FLORET 1 induced the three-florets spikelet in rice. PNAS 114:9984−89 doi: 10.1073/pnas.1700504114
CrossRef Google Scholar
|
[28]
|
Zong J, Wang L, Zhu L, Bian L, Zhang B, et al. 2022. A rice single cell transcriptomic atlas defines the developmental trajectories of rice floret and inflorescence meristems. New Phytologist 234:494−512 doi: 10.1111/nph.18008
CrossRef Google Scholar
|
[29]
|
Wang K, Tang D, Hong L, Xu W, Huang J, et al. 2010. DEP and AFO regulate reproductive habit in rice. PLoS Genetics 6:e1000818 doi: 10.1371/journal.pgen.1000818
CrossRef Google Scholar
|
[30]
|
Jin Y, Luo Q, Tong H, Wang A, Cheng Z, et al. 2011. An AT-hook gene is required for palea formation and floral organ number control in rice. Developmental Biology 359:277−88 doi: 10.1016/j.ydbio.2011.08.023
CrossRef Google Scholar
|
[31]
|
Yuan Z, Gao S, Xue DW, Luo D, Li LT, et al. 2009. RETARDED PALEA1 controls palea development and floral zygomorphy in rice. Plant Physiology 149:235−44 doi: 10.1104/pp.108.128231
CrossRef Google Scholar
|
[32]
|
Sang X, Li Y, Luo Z, Ren D, Fang L, et al. 2012. CHIMERIC FLORAL ORGANS1, encoding a monocot-specific MADS box protein, regulates floral organ identity in rice. Plant Physiology 160:788−807 doi: 10.1104/pp.112.200980
CrossRef Google Scholar
|
[33]
|
Hu Y, Wang L, Jia R, Liang W, Zhang X, et al. 2021. Rice transcription factor MADS32 regulates floral patterning through interactions with multiple floral homeotic genes. Journal of Experimental Botany 72:2434−49 doi: 10.1093/jxb/eraa588
CrossRef Google Scholar
|
[34]
|
Tao J, Liang W, An G, Zhang D. 2018. OsMADS6 controls flower development by activating rice FACTOR OF DNA METHYLATION LIKE1. Plant Physiology 177:713−27 doi: 10.1104/pp.18.00017
CrossRef Google Scholar
|
[35]
|
Ariizumi T, Toriyama K. 2011. Genetic regulation of sporopollenin synthesis and pollen exine development. Annual Review of Plant Biology 62:437 doi: 10.1146/annurev-arplant-042809-112312
CrossRef Google Scholar
|
[36]
|
Strand J, Knight C, Robson J, Talle B, Wilson ZA. 2021. Evolution and diversity of the angiosperm anther: trends in function and development. Plant Reproduction 34:307−19 doi: 10.1007/s00497-021-00416-1
CrossRef Google Scholar
|
[37]
|
Gómez JF, Talle B, Wilson ZA. 2015. Anther and pollen development: A conserved developmental pathway. Journal of Integrative Plant Biology 57:876−91 doi: 10.1111/jipb.12425
CrossRef Google Scholar
|
[38]
|
Shi J, Cui M, Yang L, Kim YJ, Zhang D. 2015. Genetic and biochemical mechanisms of pollen wall development. Trends in Plant Science 20:741−53 doi: 10.1016/j.tplants.2015.07.010
CrossRef Google Scholar
|
[39]
|
Zhang DB, Wilson ZA. 2009. Stamen specification and anther development in rice. Chinese Science Bulletin 54:2342−53 doi: 10.1007/s11434-009-0348-3
CrossRef Google Scholar
|
[40]
|
Wilson ZA, Zhang DB. 2009. From Arabidopsis to rice: pathways in pollen development. Journal of Experimental Botany 60:1479−92 doi: 10.1093/jxb/erp095
CrossRef Google Scholar
|
[41]
|
Tan H, Liang W, Hu J, Zhang D. 2012. MTR1 encodes a secretory fasciclin glycoprotein required for male reproductive development in rice. Developmental Cell 22:1127−37 doi: 10.1016/j.devcel.2012.04.011
CrossRef Google Scholar
|
[42]
|
Yang L, Qian X, Chen M, Fei Q, Meyers BC, et al. 2016. Regulatory role of a receptor-Like kinase in specifying anther cell identity. Plant Physiology 171:2085−100 doi: 10.1104/pp.16.00016
CrossRef Google Scholar
|
[43]
|
Yang X, Li G, Tian Y, Song Y, Liang W, et al. 2018. A rice glutamyl-tRNA synthetase modulates early anther cell division and patterning. Plant Physiology 177:728−44 doi: 10.1104/pp.18.00110
CrossRef Google Scholar
|
[44]
|
Fu Z, Yu J, Cheng X, Zong X, Xu J, et al. 2014. The rice basic helix-loop-helix transcription factor TDR INTERACTING PROTEIN2 is a central switch in early anther development. The Plant Cell 26:1512−24 doi: 10.1105/tpc.114.123745
CrossRef Google Scholar
|
[45]
|
Zhang D, Yang L. 2014. Specification of tapetum and microsporocyte cells within the anther. Current Opinion in Plant Biology 17:49−55 doi: 10.1016/j.pbi.2013.11.001
CrossRef Google Scholar
|
[46]
|
Li N, Zhang D, Liu H, Yin C, Li X, et al. 2006. The rice Tapetum Degeneration Retardation gene is required for tapetum degradation and anther development. The Plant Cell 18:2999−3014 doi: 10.1105/tpc.106.044107
CrossRef Google Scholar
|
[47]
|
Zhang D, Liang W, Yuan Z, Li N, Shi J, et al. 2008. Tapetum degeneration retardation is critical for aliphatic metabolism and gene regulation during rice pollen development. Molecular Plant 1:599−610 doi: 10.1093/mp/ssn028
CrossRef Google Scholar
|
[48]
|
Niu N, Liang W, Yang X, Jin W, Wilson Z, et al. 2013. EAT1 promotes tapetal cell death by regulating aspartic proteases during male reproductive development in rice. Nature Communications 4:11 doi: 10.1038/ncomms2396
CrossRef Google Scholar
|
[49]
|
Hu L, Liang W, Yin C, Cui X, Zong J, et al. 2011. Rice MADS3 regulates ROS homeostasis during late anther development. The Plant Cell 23:515−33 doi: 10.1105/tpc.110.074369
CrossRef Google Scholar
|
[50]
|
Qu G, Quan S, Mondol P, Xu J, Zhang D, et al. 2014. Comparative metabolomic analysis of wild type and mads3 mutant rice anthers. Journal of Integrative Plant Biology 56:849−63 doi: 10.1111/jipb.12245
CrossRef Google Scholar
|
[51]
|
Li H, Yuan Z, Vizcay-Barrena G, Yang C, Liang W, et al. 2011. PERSISTENT TAPETAL CELL1 encodes a PHD-finger protein that is required for tapetal cell death and pollen development in Rice. Plant Physiology 156:615−30 doi: 10.1104/pp.111.175760
CrossRef Google Scholar
|
[52]
|
Uzair M, Xu D, Schreiber L, Shi J, Liang W, et al. 2020. PERSISTENT TAPETAL CELL2 is required for normal tapetal programmed cell death and pollen wall patterning. Plant Physiology 182:962−76 doi: 10.1104/pp.19.00688
CrossRef Google Scholar
|
[53]
|
Shi J, Tan H, Yu X, Liu Y, Liang W, et al. 2011. Defective Pollen Wall is required for anther and microspore development in rice and encodes a fatty acyl carrier protein reductase. The Plant Cell 23:2225−46 doi: 10.1105/tpc.111.087528
CrossRef Google Scholar
|
[54]
|
Chen W, Yu X, Zhang K, Shi J, De Oliveira S, et al. 2011. Male Sterile2 encodes a plastid-localized fatty acyl carrier protein reductase required for pollen exine development in Arabidopsis. Plant Physiology 157:842−53 doi: 10.1104/pp.111.181693
CrossRef Google Scholar
|
[55]
|
Mondol PC, Xu D, Duan L, Shi JX, Wang C, et al. 2020. Defective Pollen Wall 3 (DPW3), a novel alpha integrin-like protein, is required for pollen wall formation in rice. New Phytologist 225:807−22 doi: 10.1111/nph.16161
CrossRef Google Scholar
|
[56]
|
Men X, Shi J, Liang W, Zhang Q, Lian G, et al. 2017. Glycerol-3-Phosphate Acyltransferase 3 (OsGPAT3) is required for anther development and male fertility in rice. Journal of Experimental Botany 68:513−26 doi: 10.1093/jxb/erw445
CrossRef Google Scholar
|
[57]
|
Li H, Pinot F, Sauveplane V, Werck-Reichhart D, Diehl P, et al. 2010. Cytochrome P450 family member CYP704B2 catalyzes the ω-hydroxylation of fatty acids and is required for anther cutin biosynthesis and pollen exine formation in rice. The Plant Cell 22:173−90 doi: 10.1105/tpc.109.070326
CrossRef Google Scholar
|
[58]
|
Yang X, Wu D, Shi J, He Y, Pinot F, et al. 2014. Rice CYP703A3, a cytochrome P450 hydroxylase, is essential for development of anther cuticle and pollen exine. Journal of Integrative Plant Biology 56:979−94 doi: 10.1111/jipb.12212
CrossRef Google Scholar
|
[59]
|
Zhang D, Liang W, Yin C, Zong J, Gu F, et al. 2010. OsC6, encoding a lipid transfer protein, is required for postmeiotic anther development In Rice. Plant Physiology 154:149−62 doi: 10.1104/pp.110.158865
CrossRef Google Scholar
|
[60]
|
Zhao G, Shi J, Liang W, Xue F, Luo Q, et al. 2015. Two ATP Binding Cassette G Transporters, rice ATP Binding Cassette G26 and ATP Binding Cassette G15, collaboratively regulate rice male reproduction. Plant Physiology 169:2064−79 doi: 10.1104/pp.15.00262
CrossRef Google Scholar
|
[61]
|
Zhu L, Shi J, Zhao G, Zhang D, Liang W. 2013. Post-meiotic deficient anther1 (PDA1) encodes an ABC transporter required for the development of anther cuticle and pollen exine in rice. Journal of Plant Biology 56:59−68 doi: 10.1007/s12374-013-0902-z
CrossRef Google Scholar
|
[62]
|
Xu D, Shi J, Rautengarten C, Yang L, Qian X, et al. 2017. Defective Pollen Wall 2 (DPW2) encodes an acyl transferase required for rice pollen development. Plant Physiology 173:240−55 doi: 10.1104/pp.16.00095
CrossRef Google Scholar
|
[63]
|
Zhang H, Liang W, Yang X, Luo X, Jiang N, et al. 2010. Carbon Starved Anther encodes a MYB domain protein that regulates sugar partitioning required for rice pollen development. The Plant Cell 22:672−89 doi: 10.1105/tpc.109.073668
CrossRef Google Scholar
|
[64]
|
Zhu X, Liang W, Cui X, Chen M, Yin C, et al. 2015. Brassinosteroids promote development of rice pollen grains and seeds by triggering expression of Carbon Starved Anther, a MYB domain protein. The Plant Journal 82:570−81 doi: 10.1111/tpj.12820
CrossRef Google Scholar
|
[65]
|
Liu Z, Bao W, Liang W, Yin J, Zhang D. 2010. Identification of gamyb-4 and analysis of the regulatory role of GAMYB in rice anther development. Journal of Integrative Plant Biology 52:670−78 doi: 10.1111/j.1744-7909.2010.00959.x
CrossRef Google Scholar
|
[66]
|
Wang Y, Wang Y, Zhang D. 2006. Identification of the rice (Oryza sativa L.) mutant msp1-4 and expression analysis of its UDT1 and GAMYB genes. Journal of Plant Physiology and Molecular Biology 32:527−34 doi: 10.3321/j.issn:1671-3877.2006.05.004
CrossRef Google Scholar
|
[67]
|
Xu J, Yang C, Yuan Z, Zhang D, Gondwe MY, et al. 2010. The ABORTED MICROSPORES regulatory network is required for postmeiotic male reproductive development in Arabidopsis thaliana. The Plant Cell 22:91−107 doi: 10.1105/tpc.109.071803
CrossRef Google Scholar
|
[68]
|
Xu J, Ding Z, Vizcay-Barrena G, Shi J, Liang W, et al. 2014. ABORTED MICROSPORES acts as a master regulator of pollen wall formation in Arabidopsis. The Plant Cell 26:1544−56 doi: 10.1105/tpc.114.122986
CrossRef Google Scholar
|
[69]
|
Yu J, Han J, Kim YJ, Song M, Yang Z, et al. 2017. Two rice receptor-like kinases maintain male fertility under changing temperatures. PNAS 114:12327−32 doi: 10.1073/pnas.1705189114
CrossRef Google Scholar
|
[70]
|
Wang D, Li J, Sun L, Hu Y, Yu J, et al. 2021. Two rice MYB transcription factors maintain male fertility in response to photoperiod by modulating sugar partitioning. New Phytologist 231:1612−29 doi: 10.1111/nph.17512
CrossRef Google Scholar
|
[71]
|
Li J, Wang D, Sun S, Sun L, Zong J, et al. 2022. The regulatory role of CARBON STARVED ANTHER-mediated photoperiod-dependent male fertility in rice. Plant Physiology 189:955−71 doi: 10.1093/plphys/kiac076
CrossRef Google Scholar
|
[72]
|
Sun S, Wang D, Li J, Lei Y, Li G, et al. 2021. Transcriptome analysis reveals photoperiod-associated genes expressed in rice anthers. Frontiers in Plant Science 12:621561 doi: 10.3389/fpls.2021.621561
CrossRef Google Scholar
|
[73]
|
Zhang H, Xu C, He Y, Zong J, Yang X, et al. 2013. Mutation in CSA creates a new photoperiod-sensitive genic male sterile line applicable for hybrid rice seed production. PNAS 110:76−81 doi: 10.1073/pnas.1213041110
CrossRef Google Scholar
|
[74]
|
Li G, Liang W, Zhang X, Ren H, Hu J, et al. 2014. Rice actin-binding protein RMD is a key link in the auxin-actin regulatory loop that controls cell growth. PNAS 111:10377−82 doi: 10.1073/pnas.1401680111
CrossRef Google Scholar
|
[75]
|
Zhang Z, Zhang Y, Tan H, Wang Y, Li G, et al. 2011. RICE MORPHOLOGY DETERMINANT encodes the type II formin FH5 and regulates rice morphogenesis. The Plant Cell 23:681−700 doi: 10.1105/tpc.110.081349
CrossRef Google Scholar
|
[76]
|
Li G, Yang X, Zhang X, Song Y, Liang W, et al. 2018. Rice morphology determinant-mediated actin filament organization contributes to pollen tube growth. Plant Physiology 177:255−70 doi: 10.1104/pp.17.01759
CrossRef Google Scholar
|
[77]
|
Huang G, Liang W, Sturrock CJ, Pandey BK, Giri J, et al. 2018. Rice actin binding protein RMD controls crown root angle in response to external phosphate. Nature Communications 9:2346 doi: 10.1038/s41467-018-04710-x
CrossRef Google Scholar
|
[78]
|
Song Y, Li G, Nowak J, Zhang X, Xu D, et al. 2019. The rice actin-binding protein RMD regulates light-dependent shoot gravitropism. Plant Physiology 181:630−44 doi: 10.1104/pp.19.00497
CrossRef Google Scholar
|
[79]
|
Liu J, Guo J, Zhang H, Li N, Yang L, et al. 2009. Development and in-house validation of the event-specific polymerase chain reaction detection methods for genetically modified soybean MON89788 based on the cloned integration flanking sequence. Journal of Agricultural and Food Chemistry 57:10524−30 doi: 10.1021/jf900672d
CrossRef Google Scholar
|
[80]
|
Yang L, Guo J, Zhang H, Liu J, Zhang D. 2008. Qualitative and quantitative event-specific PCR detection methods for oxy-235 canola based on the 3' integration flanking sequence. Journal of Agricultural and Food Chemistry 56:1804−09 doi: 10.1021/jf073465i
CrossRef Google Scholar
|
[81]
|
Yang L, Pan A, Zhang H, Guo J, Yin C, et al. 2006. Event-specific qualitative and quantitative polymerase chain reaction analysis for genetically modified canola T45. Journal of Agricultural and Food Chemistry 54:9735−40 doi: 10.1021/jf061918y
CrossRef Google Scholar
|
[82]
|
Pan A, Yang L, Xu S, Yin C, Zhang K, et al. 2006. Event-specific qualitative and quantitative PCR detection of MON863 maize based upon the 3'-transgene integration sequence. Journal of Cereal Science 43:250−57 doi: 10.1016/j.jcs.2005.10.003
CrossRef Google Scholar
|
[83]
|
Yang L, Pan A, Zhang K, Yin C, Qian B, et al. 2005. Qualitative and quantitative PCR methods for event-specific detection of genetically modified cotton Mon1445 and Mon531. Transgenic Research 14:817−31 doi: 10.1007/s11248-005-0010-z
CrossRef Google Scholar
|
[84]
|
Yang L, Shen H, Pan A, Chen J, Huang C, et al. 2005. Screening and construct specific detection methods of transgenic Huafan No. 1 tomato by conventional and real-time PCR. Journal of the Science of Food and Agriculture 85:2159−66 doi: 10.1002/jsfa.2193
CrossRef Google Scholar
|
[85]
|
Yang L, Xu S, Pan A, Yin C, Zhang K, et al. 2005. Event-specific qualitative and quantitative PCR detection of genetically modified MON863 maize based on the 5'-transgene integration sequence. Journal of Agricultural and Food Chemistry 53:9312−18 doi: 10.1021/jf051782o
CrossRef Google Scholar
|
[86]
|
Weng HB, Aihu Pan, Litao Yang, Chengmei Zhang, Zhili Liu, et al. 2004. Estimating transgene copy number by real-time PCR assay using HMG I/Y as an endogenous reference gene in transgenic rapeseed. Plant Mol Biol Rep 22:289−300 doi: 10.1007/BF02773139
CrossRef Google Scholar
|
[87]
|
Yang L, Ding JY, Zhang CM, Jia JW, Weng HB, et al. 2005. Estimating the copy number of transgenes in transformed rice by real-time quantitative PCR. Plant Cell Reports 23:759−63 doi: 10.1007/s00299-004-0881-0
CrossRef Google Scholar
|
[88]
|
Yang L, Wang C, Holst-Jensen A, Morisset D, Lin Y, et al. 2013. Characterization of GM events by insert knowledge adapted re-sequencing approaches. Scientific Reports 3:2839 doi: 10.1038/srep02839
CrossRef Google Scholar
|
[89]
|
Ding J, Jia J, Yang L, Weng H, Zhang C, et al. 2004. Validation of a rice specific gene, sucrose Phosphate Synthase, used as the endogenous reference gene for qualitative and real-time quantitative PCR detection of transgenes. Journal of Agricultural and Food Chemistry 52:3372−77 doi: 10.1021/jf049915d
CrossRef Google Scholar
|
[90]
|
Weng H, Yang L, Liu Z, Ding J, Pan A, et al. 2005. Novel reference gene, High-mobility-group protein I/Y, used in qualitative and real-time quantitative polymerase chain reaction detection of transgenic rapeseed cultivars. Journal of AOAC International 88:577−84 doi: 10.1093/jaoac/88.2.577
CrossRef Google Scholar
|
[91]
|
Yang L, Pan A, Jia J, Ding J, Chen J, et al. 2005. Validation of a tomato-specific gene, LAT52, used as an endogenous reference gene in qualitative and real-time quantitative PCR detection of transgenic tomatoes. Journal of Agricultural and Food Chemistry 53:183−90 doi: 10.1021/jf0493730
CrossRef Google Scholar
|
[92]
|
Yang L, Chen J, Huang C, Liu Y, Jia S, et al. 2005. Validation of a cotton-specific gene, Sad1, used as an endogenous reference gene in qualitative and real-time quantitative PCR detection of transgenic cottons. Plant Cell Reports 24:237−45 doi: 10.1007/s00299-005-0929-9
CrossRef Google Scholar
|
[93]
|
Guo J, Yang L, Liu X, Zhang H, Qian B, et al. 2009. Applicability of the Chymopapain gene used as endogenous reference gene for transgenic Huanong No. 1 papaya detection. Journal of Agricultural and Food Chemistry 57:6502−9 doi: 10.1021/jf900656t
CrossRef Google Scholar
|
[94]
|
Huang H, Cheng F, Wang R, Zhang D, Yang L. 2013. Evaluation of four endogenous reference genes and their real-time PCR assays for common wheat quantification in GMOs detection. PLoS One 8:e75850 doi: 10.1371/journal.pone.0075850
CrossRef Google Scholar
|
[95]
|
Yang L, Pan AH, Zhang K, Guo J, Yin C, et al. 2005. Identification and quantification of three genetically modified insect resistant cotton lines using conventional and TaqMan real-time polymerase chain reaction methods. Journal of Agricultural and Food Chemistry 53:6222−29 doi: 10.1021/jf050095u
CrossRef Google Scholar
|
[96]
|
Guo J, Yang L, Liu X, Guan X, Jiang L, et al. 2009. Characterization of the exogenous insert and development of event-specific PCR detection methods for genetically modified Huanong No. 1 papaya. Journal of Agricultural and Food Chemistry 57:7205−12 doi: 10.1021/jf901198x
CrossRef Google Scholar
|
[97]
|
Liu D, Shen J, Yang L, Zhang D. 2010. Evaluation of the impacts of different nuclear DNA content in the hull, endosperm, and embryo of rice seeds on GM rice quantification. Journal of Agricultural and Food Chemistry 58:4582−87 doi: 10.1021/jf9044233
CrossRef Google Scholar
|
[98]
|
Wang C, Jiang L, Rao J, Liu Y, Yang L, et al. 2010. Evaluation of four genes in rice for their suitability as endogenous reference standards in quantitative PCR. Journal of Agricultural and Food Chemistry 58:11543−47 doi: 10.1021/jf102092c
CrossRef Google Scholar
|
[99]
|
Jiang L, Yang L, Rao J, Guo J, Wang S, et al. 2010. Development and in-house validation of the event-specific qualitative and quantitative PCR detection methods for genetically modified cotton MON15985. Journal of the Science of Food and Agriculture 90:402−8 doi: 10.1002/jsfa.3829
CrossRef Google Scholar
|
[100]
|
Wu Y, Litao Yang, Cao Y, Song G, Shen P, et al. 2013. Collaborative validation of an event-specific quantitative real-time PCR method for genetically modified rice event TT51-1 detection. Journal of Agricultural and Food Chemistry 61:5953−60 doi: 10.1021/jf401339k
CrossRef Google Scholar
|
[101]
|
Yang L, Zhang H, Guo J, Pan L, Zhang D. 2008. International collaborative study of the endogenous reference gene LAT52 used for qualitative and quantitative analyses of genetically modified tomato. Journal of Agricultural and Food Chemistry 56:3438−43 doi: 10.1021/jf073464q
CrossRef Google Scholar
|
[102]
|
Jiang L, Litao Yang, Zhang H, Guo J, Mazzara M, et al. 2009. International collaborative study of the endogenous reference gene, sucrose Phosphate Synthase (SPS), used for qualitative and quantitative analysis of genetically modified rice. Journal of Agricultural and Food Chemistry 57:3525−32 doi: 10.1021/jf803166p
CrossRef Google Scholar
|
[103]
|
Shen K, Li X, Wang S, Pan Y, Shi Z, et al. 2010. Establishment and in-house validation of simplex and duplex PCR methods for event-specific detection of maize SYN-E3272-5 using a new reference molecule. Journal of AOAC International 93:663−75 doi: 10.1093/jaoac/93.2.663
CrossRef Google Scholar
|
[104]
|
Wang S, Li X, Yang L, Shen K, Zhang D. 2009. Development and in-house validation of a reference molecule pMIR604 for simplex and duplex event-specific identification and quantification of GM maize MIR604. European Food Research and Technology 230:239−48 doi: 10.1007/s00217-009-1168-z
CrossRef Google Scholar
|
[105]
|
Li X, Yang L, Zhang J, Wang S, Shen K, et al. 2009. Simplex and duplex polymerase chain reaction analysis of Herculex® RW (59122) maize based on one reference molecule including separated fragments of 5' integration site and endogenous gene. Journal of AOAC International 92:1472−83 doi: 10.1093/jaoac/92.5.1472
CrossRef Google Scholar
|
[106]
|
Zhang H, Yang L, Guo J, Li X, Jiang L, et al. 2008. Development of one novel multiple-target plasmid for duplex quantitative PCR analysis of roundup ready soybean. Journal of Agricultural and Food Chemistry 56:5514−20 doi: 10.1021/jf800033k
CrossRef Google Scholar
|
[107]
|
Yang L, Guo J, Pan A, Zhang H, Zhang K, et al. 2007. Event-specific quantitative detection of nine genetically modified maizes using one novel standard reference molecule. Journal of Agricultural and Food Chemistry 55:15−24 doi: 10.1021/jf0615754
CrossRef Google Scholar
|
[108]
|
Zhang Y, Zhang D, Li W, Chen J, Peng Y, et al. 2003. A novel real-time quantitative PCR method using attached universal template probe. Nucleic Acids Research 31:e123 doi: 10.1093/nar/gng123
CrossRef Google Scholar
|
[109]
|
Yang L, Liang W, Jiang L, Li W, Cao W, et al. 2008. A novel universal real-time PCR system using the attached universal duplex probes for quantitative analysis of nucleic acids. BMC Molecular Biology 9:54 doi: 10.1186/1471-2199-9-54
CrossRef Google Scholar
|
[110]
|
Guo J, Yang L, Chen L, Morisset D, Li X, et al. 2011. MPIC: a high-throughput analytical method for multiple DNA targets. Analytical Chemistry 83:1579−86 doi: 10.1021/ac103266w
CrossRef Google Scholar
|
[111]
|
Guan X, Guo J, Shen P, Yang L, Zhang D. 2010. Visual and rapid detection of two genetically modified soybean events using loop-mediated isothermal amplification method. Food Analytical Methods 3:313−20 doi: 10.1007/s12161-010-9132-x
CrossRef Google Scholar
|
[112]
|
Dong W, Yang L, Shen K, Kim B, Kleter GA, et al. 2008. GMDD: a database of GMO detection methods. BMC Bioinformatics 9:260 doi: 10.1186/1471-2105-9-260
CrossRef Google Scholar
|
[113]
|
Hu C, Shi J, Quan S, Cui B, Kleessen S, et al. 2014. Metabolic variation between japonica and indica rice cultivars as revealed by non-targeted metabolomics. Scientific Reports 4:5067 doi: 10.1038/srep05067
CrossRef Google Scholar
|
[114]
|
Lin H, Rao J, Shi J, Hu C, Cheng F, et al. 2014. Seed metabolomic study reveals significant metabolite variations and correlations among different soybean cultivars. Journal of Integrative Plant Biology 56:826−36 doi: 10.1111/jipb.12228
CrossRef Google Scholar
|
[115]
|
Rao J, Cheng F, Hu C, Quan S, Lin H, Wang J, Chen G, et al. 2014. Metabolic map of mature maize kernels. Metabolomics 10:775−787 doi: 10.1007/s11306-014-0624-3
CrossRef Google Scholar
|
[116]
|
Rao J, Yang L, Guo J, Quan S, Chen G, et al. 2016. Metabolic changes in transgenic maize mature seeds over-expressing the Aspergillus niger phyA2. Plant Cell Reports 35:429−37 doi: 10.1007/s00299-015-1894-6
CrossRef Google Scholar
|