[1]
|
Kim YJ, Zhang D. 2018. Molecular control of male fertility for crop hybrid breeding. Trends in Plant Science 23:53−65 doi: 10.1016/j.tplants.2017.10.001
CrossRef Google Scholar
|
[2]
|
Gómez JF, Talle B, Wilson ZA. 2015. Anther and pollen development: a conserved developmental pathway. Journal of Integrative Plant Biology 57:876−91 doi: 10.1111/jipb.12425
CrossRef Google Scholar
|
[3]
|
Åstrand J, Knight C, Robson J, Talle B, Wilson ZA. 2021. Evolution and diversity of the angiosperm anther: trends in function and development. Plant Reproduction 34:307−19 doi: 10.1007/s00497-021-00416-1
CrossRef Google Scholar
|
[4]
|
Marchant DB, Walbot V. 2022. Anther development—the long road to making pollen. The Plant Cell 34:4677−95 doi: 10.1093/plcell/koac287
CrossRef Google Scholar
|
[5]
|
Wan X, Wu S, Li Z, An X, Tian Y. 2020. Lipid metabolism: critical roles in male fertility and other aspects of reproductive development in plants. Molecular Plant 13:955−83 doi: 10.1016/j.molp.2020.05.009
CrossRef Google Scholar
|
[6]
|
Lee SK, Lee J, Jo M, Jeon JS. 2022. Exploration of sugar and starch metabolic pathway crucial for pollen fertility in rice. International Journal of Molecular Sciences 23:14091 doi: 10.3390/ijms232214091
CrossRef Google Scholar
|
[7]
|
Zhang D, Shi J, Yang X. 2016. Role of lipid metabolism in plant pollen exine development. In Lipids in Plant and Algae Development. Subcellular Biochemistry, eds. Nakamura Y, Li-Beisson Y. vol 86. Cham, Switzerland: Springer, Cham. pp. 315–37. https://doi.org/10.1007/978-3-319-25979-6_13
|
[8]
|
Shi J, Cui M, Yang L, Kim YJ, Zhang D. 2015. Genetic and biochemical mechanisms of pollen wall development. Trends in Plant Science 20:741−53 doi: 10.1016/j.tplants.2015.07.010
CrossRef Google Scholar
|
[9]
|
Zhang D, Luo X, Zhu L. 2011. Cytological analysis and genetic control of rice anther development. Journal of Genetics and Genomics 38:379−90 doi: 10.1016/j.jgg.2011.08.001
CrossRef Google Scholar
|
[10]
|
Wilson ZA, Zhang D. 2009. From Arabidopsis to rice: pathways in pollen development. Journal of Experimental Botany 60:1479−92 doi: 10.1093/jxb/erp095
CrossRef Google Scholar
|
[11]
|
Ma X, Wu Y, Zhang G. 2021. Formation pattern and regulatory mechanisms of pollen wall in Arabidopsis. Journal of Plant Physiology 260:153388 doi: 10.1016/j.jplph.2021.153388
CrossRef Google Scholar
|
[12]
|
Sun Y, Fu M, Ang Y, Zhu L, Wei L, et al. 2022. Combined analysis of transcriptome and metabolome reveals that sugar, lipid, and phenylpropane metabolism are essential for male fertility in temperature-induced male sterile rice. Frontiers in Plant Science 13:945105 doi: 10.3389/fpls.2022.945105
CrossRef Google Scholar
|
[13]
|
Fang Y, Yang J, Guo X, Qin Y, Zhou H, et al. 2022. CRISPR/Cas9-induced mutagenesis of TMS5 confers thermosensitive genic male sterility by influencing protein expression in rice (Oryza sativa L.). International Journal of Molecular Sciences 23:8354 doi: 10.3390/ijms23158354
CrossRef Google Scholar
|
[14]
|
Abbas A, Yu P, Sun L, Yang Z, Chen D, et al. 2021. Exploiting genic male sterility in rice: from molecular dissection to breeding applications. Frontiers in Plant Science 12:629314 doi: 10.3389/fpls.2021.629314
CrossRef Google Scholar
|
[15]
|
Sze H, Palanivelu R, Harper JF, Johnson MA. 2021. Holistic insights from pollen omics: co-opting stress-responsive genes and ER-mediated proteostasis for male fertility. Plant Physiology 187:2361−80 doi: 10.1093/plphys/kiab463
CrossRef Google Scholar
|
[16]
|
Tang H, Song Y, Guo J, Wang J, Zhang L, et al. 2018. Physiological and metabolome changes during anther development in wheat (Triticum aestivum L.). Plant Physiology and Biochemistry 132:18−32 doi: 10.1016/j.plaphy.2018.08.024
CrossRef Google Scholar
|
[17]
|
Li C, Tao R, Li Y, Duan M, Xu J. 2020. Transcriptome analysis of the thermosensitive genic male-sterile line provides new insights into fertility alteration in rice (Oryza sativa). Genomics 112:2119−29 doi: 10.1016/j.ygeno.2019.12.006
CrossRef Google Scholar
|
[18]
|
Sun S, Wang D, Li J, Lei Y, Li G, et al. 2021. Transcriptome analysis reveals photoperiod-associated genes expressed in rice anthers. Frontiers in Plant Science 12:621561 doi: 10.3389/fpls.2021.621561
CrossRef Google Scholar
|
[19]
|
Yu J, Han J, Kim Y-J, Song M, Yang Z, et al. 2017. Two rice receptor-like kinases maintain male fertility under changing temperatures. Proceedings of the National Academy of Sciences 114:12327−32 doi: 10.1073/pnas.1705189114
CrossRef Google Scholar
|
[20]
|
Jin J, Gui S, Li Q, Wang Y, Zhang H, et al. 2020. The transcription factor GATA10 regulates fertility conversion of a two-line hybrid tms5 mutant rice via the modulation of Ub L40 expression. Journal of Integrative Plant Biology 62:1034−56 doi: 10.1111/jipb.12871
CrossRef Google Scholar
|
[21]
|
Wen J, Wang L, Wang J, Zeng Y, Xu Y, et al. 2019. The transcription factor OsbHLH138 regulates thermosensitive genic male sterility in rice via activation of TMS5. Theoretical and Applied Genetics 132:1721−32 doi: 10.1007/s00122-019-03310-7
CrossRef Google Scholar
|
[22]
|
Zhou H, Zhou M, Yang Y, Li J, Zhu L, et al. 2014. RNase ZS1 processes Ub L40 mRNAs and controls thermosensitive genic male sterility in rice. Nature Communications 5:4884 doi: 10.1038/ncomms5884
CrossRef Google Scholar
|
[23]
|
Zhang H, Liang W, Yang X, Luo X, Jiang N, et al. 2010. Carbon Starved Anther encodes a MYB domain protein that regulates sugar partitioning required for rice pollen development. The Plant Cell 22:672−89 doi: 10.1105/tpc.109.073668
CrossRef Google Scholar
|
[24]
|
Zhang H, Xu C, He Y, Zong J, Yang X, et al. 2013. Mutation in CSA creates a new photoperiod-sensitive genic male sterile line applicable for hybrid rice seed production. Proceedings of the National Academy of Sciences 110:76−81 doi: 10.1073/pnas.1213041110
CrossRef Google Scholar
|
[25]
|
Li J, Wang D, Sun S, Sun L, Zong J, et al. 2022. The regulatory role of Carbon Starved Anther-mediated photoperiod-dependent male fertility in rice. Plant Physiology 189:955−71 doi: 10.1093/plphys/kiac076
CrossRef Google Scholar
|
[26]
|
Wang D, Li J, Sun L, Hu Y, Yu J, et al. 2021. Two rice MYB transcription factors maintain male fertility in response to photoperiod by modulating sugar partitioning. New Phytologist 231:1612−29 doi: 10.1111/nph.17512
CrossRef Google Scholar
|
[27]
|
Chen R, Zhao X, Shao Z, Wei Z, Wang Y, et al. 2007. Rice UDP-Glucose Pyrophosphorylase1 is essential for pollen callose deposition and its cosuppression results in a new type of thermosensitive genic male sterility. The Plant Cell 19:847−61 doi: 10.1105/tpc.106.044123
CrossRef Google Scholar
|
[28]
|
Virmani SS, Ilyas-Ahmed M. 2001. Environment-sensitive genic male sterility (EGMS) in crops. In Advances in Agronomy. vol 72. Amsterdam: Elsevier. pp. 139–95
|
[29]
|
Fan Y, Yang J, Mathioni SM, Yu J, Shen J, et al. 2016. PMS1T, producing phased small-interfering RNAs, regulates photoperiod-sensitive male sterility in rice. PNAS 113:15144−49 doi: 10.1073/pnas.1619159114
CrossRef Google Scholar
|
[30]
|
Ding J, Shen J, Mao H, Xie W, Li X, et al. 2012. RNA-directed DNA methylation is involved in regulating photoperiod-sensitive male sterility in rice. Molecular Plant 5:1210−16 doi: 10.1093/mp/sss095
CrossRef Google Scholar
|
[31]
|
Lu Q, Li X, Guo D, Xu C, Zhang Q. 2005. Localization of pms3, a gene for photoperiod-sensitive genic male sterility, to a 28.4-kb DNA fragment. Molecular Genetics and Genomics 273:507−11 doi: 10.1007/s00438-005-1155-4
CrossRef Google Scholar
|
[32]
|
Chen H, Zhang Z, Ni E, Lin J, Peng G, et al. 2020. HMS1 interacts with HMS1I to regulate very-long-chain fatty acid biosynthesis and the humidity-sensitive genic male sterility in rice (Oryza sativa). New Phytologist 225:2077−93 doi: 10.1111/nph.16288
CrossRef Google Scholar
|
[33]
|
Shi Q, Lou Y, Shen S, Wang S, Zhou L, et al. 2021. A cellular mechanism underlying the restoration of thermo/photoperiod-sensitive genic male sterility. Molecular Plant 14:2104−14 doi: 10.1016/j.molp.2021.08.019
CrossRef Google Scholar
|
[34]
|
Wang K, Yu Y, Jia X, Zhou S, Zhang F, et al. 2022. Delayed callose degradation restores the fertility of multiple P/TGMS lines in Arabidopsis. Journal of Integrative Plant Biology 64:717−30 doi: 10.1111/jipb.13205
CrossRef Google Scholar
|
[35]
|
Zhang C, Ren M, Han W, Zhang Y, Huang M, et al. 2022. Slow development allows redundant genes to restore the fertility of rpg1, a TGMS line in Arabidopsis. The Plant Journal 109:1375−85 doi: 10.1111/tpj.15635
CrossRef Google Scholar
|
[36]
|
Zhang C, Xu T, Ren M, Zhu J, Shi Q, et al. 2020. Slow development restores the fertility of photoperiod-sensitive male-sterile plant lines. Plant Physiology 184:923−32 doi: 10.1104/pp.20.00951
CrossRef Google Scholar
|
[37]
|
Xu X, Qian X, Wang K, Yu Y, Guo Y, et al. 2021. Slowing development facilitates Arabidopsis mgt mutants to accumulate enough magnesium for pollen formation and fertility restoration. Frontiers in Plant Science 11:621338 doi: 10.3389/fpls.2020.621338
CrossRef Google Scholar
|
[38]
|
Zhu J, Lou Y, Shi Q, Zhang S, Zhou W, et al. 2020. Slowing development restores the fertility of thermo-sensitive male-sterile plant lines. Nature Plants 6:360−67 doi: 10.1038/s41477-020-0622-6
CrossRef Google Scholar
|
[39]
|
Cui Y, Lu X, Gou X. 2022. Receptor-like protein kinases in plant reproduction: Current understanding and future perspectives. Plant Communications 3:100273 doi: 10.1016/j.xplc.2021.100273
CrossRef Google Scholar
|
[40]
|
Cai W, Zhang D. 2018. The role of receptor-like kinases in regulating plant male reproduction. Plant Reproduction 31:77−87 doi: 10.1007/s00497-018-0332-7
CrossRef Google Scholar
|
[41]
|
Soltabayeva A, Dauletova N, Serik S, Sandybek M, Omondi JO, et al. 2022. Receptor-like kinases (LRR-RLKs) in response of plants to biotic and abiotic stresses. Plants 11:2660 doi: 10.3390/plants11192660
CrossRef Google Scholar
|
[42]
|
Hu C, Zhu Y, Cui Y, Cheng K, Liang W, et al. 2018. A group of receptor kinases are essential for CLAVATA signalling to maintain stem cell homeostasis. Nature Plants 4:205−11 doi: 10.1038/s41477-018-0123-z
CrossRef Google Scholar
|
[43]
|
Yang L, Qian X, Chen M, Fei Q, Meyers BC, et al. 2016. Regulatory role of a receptor-like kinase in specifying anther cell identity. Plant Physiology 171:2085−100 doi: 10.1104/pp.16.00016
CrossRef Google Scholar
|
[44]
|
Han Y, Jiang S, Zhong X, Chen X, Ma C, et al. 2023. Low temperature compensates for defective tapetum initiation to restore the fertility of the novel TGMS line ostms15. Plant Biotechnology Journal 21:1659−70 doi: 10.1111/pbi.14066
CrossRef Google Scholar
|
[45]
|
Bhogireddy S, Mangrauthia SK, Kumar R, Pandey AK, Singh S, et al. 2021. Regulatory non-coding RNAs: a new frontier in regulation of plant biology. Functional & Integrative Genomics 21:313−30 doi: 10.1007/s10142-021-00787-8
CrossRef Google Scholar
|
[46]
|
Quan M, Chen J, Zhang D. 2015. Exploring the secrets of long noncoding RNAs. International Journal of Molecular Sciences 16:5467−96 doi: 10.3390/ijms16035467
CrossRef Google Scholar
|
[47]
|
Dziegielewski W, Ziolkowski PA. 2021. License to regulate: noncoding RNA special agents in plant meiosis and reproduction. Frontiers in Plant Science 12:662185 doi: 10.3389/fpls.2021.662185
CrossRef Google Scholar
|
[48]
|
Chen L, Liu Y. 2014. Male sterility and fertility restoration in crops. Annual Review of Plant Biology 65:579−606 doi: 10.1146/annurev-arplant-050213-040119
CrossRef Google Scholar
|
[49]
|
Fan Y, Zhang Q. 2018. Genetic and molecular characterization of photoperiod and thermo-sensitive male sterility in rice. Plant Reproduction 31:3−14 doi: 10.1007/s00497-017-0310-5
CrossRef Google Scholar
|
[50]
|
Peng G, Liu Z, Zhuang C, Zhou H. 2023. Environment-sensitive genic male sterility in rice and other plants. Plant, Cell & Environment 46:1120−42 doi: 10.1111/pce.14503
CrossRef Google Scholar
|
[51]
|
Ding J, Lu Q, Ouyang Y, Mao H, Zhang P, et al. 2012. A long noncoding RNA regulates photoperiod-sensitive male sterility, an essential component of hybrid rice. PNAS 109:2654−59 doi: 10.1073/pnas.1121374109
CrossRef Google Scholar
|
[52]
|
Zhou H, Liu Q, Li J, Jiang D, Zhou L, et al. 2012. Photoperiod- and thermo-sensitive genic male sterility in rice are caused by a point mutation in a novel noncoding RNA that produces a small RNA. Cell Research 22:649−60 doi: 10.1038/cr.2012.28
CrossRef Google Scholar
|
[53]
|
Si F, Luo H, Yang C, Gong J, Yan B, et al. 2023. Mobile ARGONAUTE 1d binds 22-nt miRNAs to generate phasiRNAs important for low-temperature male fertility in rice. Science China Life Sciences 66:197−208 doi: 10.1007/s11427-022-2204-y
CrossRef Google Scholar
|
[54]
|
Shi C, Zhang J, Wu B, Jouni R, Yu C, et al. 2022. Temperature-sensitive male sterility in rice determined by the roles of AGO1d in reproductive phasiRNA biogenesis and function. New Phytologist 236:1529−44 doi: 10.1111/nph.18446
CrossRef Google Scholar
|
[55]
|
Lee YS, Maple R, Dürr J, Dawson A, Tamim S, et al. 2021. A transposon surveillance mechanism that safeguards plant male fertility during stress. Nature Plants 7:34−41 doi: 10.1038/s41477-020-00818-5
CrossRef Google Scholar
|
[56]
|
Teng C, Zhang H, Hammond R, Huang K, Meyers BC, et al. 2020. Dicer-like 5 deficiency confers temperature-sensitive male sterility in maize. Nature Communications 11:2912 doi: 10.1038/s41467-020-16634-6
CrossRef Google Scholar
|
[57]
|
Canino G, Bocian E, Echeverría N, Echeverría M, Forner J, et al. 2009. Arabidopsis encodes four tRNase Z enzymes. Plant Physiology 150:1494−502 doi: 10.1104/pp.109.137950
CrossRef Google Scholar
|
[58]
|
Vogel A, Schilling O, Späth B, Marchfelder A. 2005. The tRNase Z family of proteins: physiological functions, substrate specificity and structural properties. Biological Chemistry 386:1253−64 doi: 10.1515/BC.2005.142
CrossRef Google Scholar
|
[59]
|
Cartalas J, Coudray L, Gobert A. 2022. How RNases shape mitochondrial transcriptomes. International Journal of Molecular Sciences 23:6141 doi: 10.3390/ijms23116141
CrossRef Google Scholar
|
[60]
|
Wen J, Zeng Y, Chen Y, Fan F, Li S. 2021. Genic male sterility increases rice drought tolerance. Plant Science 312:111057 doi: 10.1016/j.plantsci.2021.111057
CrossRef Google Scholar
|
[61]
|
Verma N. 2019. Transcriptional regulation of anther development in Arabidopsis. Gene 689:202−9 doi: 10.1016/j.gene.2018.12.022
CrossRef Google Scholar
|
[62]
|
Millar AA, Gubler F. 2005. The Arabidopsis GAMYB-Like genes, MYB33 and MYB65, are microrna-regulated genes that redundantly facilitate anther development. The Plant Cell 17:705−21 doi: 10.1105/tpc.104.027920
CrossRef Google Scholar
|
[63]
|
Wu L, Jing X, Zhang B, Chen S, Xu R, et al. 2022. A natural allele of OsMS1 responds to temperature changes and confers thermosensitive genic male sterility. Nature Communications 13:2055 doi: 10.1038/s41467-022-29648-z
CrossRef Google Scholar
|
[64]
|
Hou J, Fan W, Ma R, Li B, Yuan Z, et al. 2022. MALE STERILITY 3 encodes a plant homeodomain-finger protein for male fertility in soybean. Journal of Integrative Plant Biology 64:1076−86 doi: 10.1111/jipb.13242
CrossRef Google Scholar
|
[65]
|
Liu Z, Bao W, Liang W, Yin J, Zhang D. 2010. Identification of gamyb-4 and analysis of the regulatory role of GAMYB in rice anther development. Journal of Integrative Plant Biology 52:670−78 doi: 10.1111/j.1744-7909.2010.00959.x
CrossRef Google Scholar
|
[66]
|
Alonso-Peral MM, Li J, Li Y, Allen RS, Schnippenkoetter W, et al. 2010. The microRNA159-regulated GAMYB-like genes inhibit growth and promote programmed cell death in arabidopsis. Plant Physiology 154:757−71 doi: 10.1104/pp.110.160630
CrossRef Google Scholar
|
[67]
|
Kaneko M, Inukai Y, Ueguchi-Tanaka M, Itoh H, Izawa T, et al. 2004. Loss-of-function mutations of the rice GAMYB gene impair α-amylase expression in aleurone and flower development. The Plant Cell 16:33−44 doi: 10.1105/tpc.017327
CrossRef Google Scholar
|
[68]
|
Wang TY, Wang YX, You CJ. 2021. Structural and functional characteristics of plant PHD domain-containing proteins. Hereditas 43:323−39 doi: 10.16288/j.yczz.20-412
CrossRef Google Scholar
|
[69]
|
Sanchez R, Zhou M-M. 2011. The PHD finger: a versatile epigenome reader. Trends in Biochemical Sciences 36:364−72 doi: 10.1016/j.tibs.2011.03.005
CrossRef Google Scholar
|
[70]
|
Plevin MJ, Mills MM, Ikura M. 2005. The LxxLL motif: a multifunctional binding sequence in transcriptional regulation. Trends in Biochemical Sciences 30:66−69 doi: 10.1016/j.tibs.2004.12.001
CrossRef Google Scholar
|
[71]
|
Niu N, Liang W, Yang X, Jin W, Wilson ZA, et al. 2013. EAT1 promotes tapetal cell death by regulating aspartic proteases during male reproductive development in rice. Nature Communications 4:1445 doi: 10.1038/ncomms2396
CrossRef Google Scholar
|
[72]
|
Tang J, Tian X, Mei E, He M, Gao J, et al. 2022. WRKY53 negatively regulates rice cold tolerance at the booting stage by fine-tuning anther gibberellin levels. The Plant Cell 34:4495−515 doi: 10.1093/plcell/koac253
CrossRef Google Scholar
|
[73]
|
Zhang D-S, Liang W-Q, Yuan Z, Li N, Shi J, et al. 2008. Tapetum Degeneration Retardation is critical for aliphatic metabolism and gene regulation during rice pollen development. Molecular Plant 1:599−610 doi: 10.1093/mp/ssn028
CrossRef Google Scholar
|
[74]
|
Li N, Zhang DS, Liu HS, Yin CS, Li X, et al. 2006. The Rice Tapetum Degeneration Retardation gene is required for tapetum degradation and anther development. The Plant Cell 18:2999−3014 doi: 10.1105/tpc.106.044107
CrossRef Google Scholar
|
[75]
|
Li H, Yuan Z, Vizcay-Barrena G, Yang C, Liang W, et al. 2011. PERSISTENT TAPETAL CELL1 encodes a PHD-finger protein that is required for tapetal cell death and pollen development in rice. Plant Physiology 156:615−30 doi: 10.1104/pp.111.175760
CrossRef Google Scholar
|
[76]
|
Yang Z, Liu L, Sun L, Yu P, Zhang P, et al. 2019. OsMS1 functions as a transcriptional activator to regulate programmed tapetum development and pollen exine formation in rice. Plant Molecular Biology 99:175−91 doi: 10.1007/s11103-018-0811-0
CrossRef Google Scholar
|
[77]
|
Ito T, Nagata N, Yoshiba Y, Ohme-Takagi M, Ma H, et al. 2007. Arabidopsis MALE STERILITY1 encodes a PHD-type transcription factor and regulates pollen and tapetum development. The Plant Cell 19:3549−62 doi: 10.1105/tpc.107.054536
CrossRef Google Scholar
|
[78]
|
Fernández Gómez J, Wilson ZA. 2014. A barley PHD finger transcription factor that confers male sterility by affecting tapetal development. Plant Biotechnology Journal 12:765−77 doi: 10.1111/pbi.12181
CrossRef Google Scholar
|
[79]
|
Zhang D, Wu S, An X, Xie K, Dong Z, et al. 2018. Construction of a multicontrol sterility system for a maize male-sterile line and hybrid seed production based on the ZmMs7 gene encoding a PHD-finger transcription factor. Plant Biotechnology Journal 16:459−71 doi: 10.1111/pbi.12786
CrossRef Google Scholar
|
[80]
|
An X, Ma B, Duan M, Dong Z, Liu R, et al. 2020. Molecular regulation of ZmMs7 required for maize male fertility and development of a dominant male-sterility system in multiple species. PNAS 117:23499−509 doi: 10.1073/pnas.2010255117
CrossRef Google Scholar
|
[81]
|
Xue Z, Xu X, Zhou Y, Wang X, Zhang Y, et al. 2018. Deficiency of a triterpene pathway results in humidity-sensitive genic male sterility in rice. Nature Communications 9:604 doi: 10.1038/s41467-018-03048-8
CrossRef Google Scholar
|
[82]
|
Aarts MG, Keijzer CJ, Stiekema WJ, Pereira A. 1995. Molecular characterization of the CER1 gene of arabidopsis involved in epicuticular wax biosynthesis and pollen fertility. The Plant Cell 7:2115−27 doi: 10.1105/tpc.7.12.2115
CrossRef Google Scholar
|
[83]
|
Zhan H, Xiong H, Wang S, Yang Z-N. 2018. Anther endothecium-derived very-long-chain fatty acids facilitate pollen hydration in arabidopsis. Molecular Plant 11:1101−4 doi: 10.1016/j.molp.2018.05.002
CrossRef Google Scholar
|
[84]
|
Xu F, Zheng L, Yang Z, Zhang S. 2020. Arabidopsis ECERIFERUM3 (CER3) functions to maintain hydration for pollen–stigma recognition during fertilization. Journal of Plant Biology 63:347−59 doi: 10.1007/s12374-020-09257-3
CrossRef Google Scholar
|
[85]
|
Ariizumi T, Hatakeyama K, Hinata K, Sato S, Kato T, et al. 2003. A novel male-sterile mutant of Arabidopsis thaliana,faceless pollen-1, produces pollen with a smooth surface and an acetolysis-sensitive exine. Plant Molecular Biology 53:107−16 doi: 10.1023/B:PLAN.0000009269.97773.70
CrossRef Google Scholar
|
[86]
|
Chen X, Goodwin SM, Boroff VL, Liu X, Jenks MA. 2003. Cloning and characterization of the WAX2 gene of Arabidopsis involved in cuticle membrane and wax production. The Plant Cell 15:1170−85 doi: 10.1105/tpc.010926
CrossRef Google Scholar
|
[87]
|
Bernard A, Domergue F, Pascal S, Jetter R, Renne C, et al. 2012. Reconstitution of plant alkane biosynthesis in yeast demonstrates that Arabidopsis ECERIFERUM1 and ECERIFERUM3 are core components of a very-long-chain alkane synthesis complex. The Plant Cell 24:3106−18 doi: 10.1105/tpc.112.099796
CrossRef Google Scholar
|
[88]
|
Preuss D, Lemieux B, Yen G, Davis RW. 1993. A conditional sterile mutation eliminates surface components from Arabidopsis pollen and disrupts cell signaling during fertilization. Genes & Development 7:974−85 doi: 10.1101/gad.7.6.974
CrossRef Google Scholar
|
[89]
|
Fiebig A, Mayfield JA, Miley NL, Chau S, Fischer RL, et al. 2000. Alterations in CER6, a gene identical to CUT1, differentially affect long-chain lipid content on the surface of pollen and stems. The Plant Cell 12:2001−8 doi: 10.1105/tpc.12.10.2001
CrossRef Google Scholar
|
[90]
|
Jessen D, Olbrich A, Knüfer J, Krüger A, Hoppert M, et al. 2011. Combined activity of LACS1 and LACS4 is required for proper pollen coat formation in Arabidopsis. The Plant Journal 68:715−26 doi: 10.1111/j.1365-313X.2011.04722.x
CrossRef Google Scholar
|
[91]
|
Ni E, Deng L, Chen H, Lin J, Ruan J, et al. 2021. OsCER1 regulates humidity-sensitive genic male sterility through very-long-chain (VLC) alkane metabolism of tryphine in rice. Functional Plant Biology 48:461 doi: 10.1071/FP20168
CrossRef Google Scholar
|
[92]
|
Ni E, Zhou L, Li J, Jiang D, Wang Z, et al. 2018. OsCER1 plays a pivotal role in very-long-chain alkane biosynthesis and affects plastid development and programmed cell death of tapetum in rice (Oryza sativa L.). Frontiers in Plant Science 9:1217 doi: 10.3389/fpls.2018.01217
CrossRef Google Scholar
|
[93]
|
Yu B, Liu L, Wang T. 2019. Deficiency of very long chain alkanes biosynthesis causes humidity-sensitive male sterility via affecting pollen adhesion and hydration in rice. Plant, Cell & Environment 42:3340−54 doi: 10.1111/pce.13637
CrossRef Google Scholar
|
[94]
|
Wang X, Guan Y, Zhang D, Dong X, Tian L, et al. 2017. A β-Ketoacyl-CoA synthase is involved in rice leaf cuticular wax synthesis and requires a CER2-LIKE protein as a cofactor. Plant Physiology 173:944−55 doi: 10.1104/pp.16.01527
CrossRef Google Scholar
|
[95]
|
Zheng H, Rowland O, Kunst L. 2005. Disruptions of the Arabidopsis Enoyl-CoA reductase gene reveal an essential role for very-long-chain fatty acid synthesis in cell expansion during plant morphogenesis. The Plant Cell 17:1467−81 doi: 10.1105/tpc.104.030155
CrossRef Google Scholar
|
[96]
|
Ashraf MF, Peng G, Liu Z, Noman A, Alamri S, et al. 2020. Molecular control and application of male fertility for two-line hybrid rice breeding. International Journal of Molecular Sciences 21:7868 doi: 10.3390/ijms21217868
CrossRef Google Scholar
|
[97]
|
Zhang Y, Li Y, Zhong X, Wang J, Zhou L, et al. 2022. Mutation of glucose-methanol-choline oxidoreductase leads to thermosensitive genic male sterility in rice and Arabidopsis. Plant Biotechnology Journal 20:2023−35 doi: 10.1111/pbi.13886
CrossRef Google Scholar
|
[98]
|
Xu L, Tang Y, Yang Y, Wang D, Wang H, et al. 2023. Microspore-expressed SCULP1 is required for p-coumaroylation of sporopollenin, exine integrity, and pollen development in wheat. New Phytologist 239:102−15 doi: 10.1111/nph.18917
CrossRef Google Scholar
|
[99]
|
Schuhmann P, Engstler C, Klöpfer K, Gügel IL, Abbadi A, et al. 2022. Two wrongs make a right: heat stress reversion of a male-sterile Brassica napus line. Journal of Experimental Botany 73:3531−51 doi: 10.1093/jxb/erac082
CrossRef Google Scholar
|
[100]
|
Zhao Z, Wang C, Yu X, Tian Y, Wang W, et al. 2022. Auxin regulates source-sink carbohydrate partitioning and reproductive organ development in rice. PNAS 119:e2121671119 doi: 10.1073/pnas.2121671119
CrossRef Google Scholar
|
[101]
|
Jin Y, Song X, Chang H, Zhao Y, Cao C, et al. 2022. The GA–DELLA–OsMS188 module controls male reproductive development in rice. New Phytologist 233:2629−42 doi: 10.1111/nph.17939
CrossRef Google Scholar
|
[102]
|
Zhang J, Zong X, Yu G, Li J, Zhang W. 2006. Relationship between phytohormones and male sterility in thermo-photo-sensitive genic male sterile (TGMS) Wheat. Euphytica 150:241−48 doi: 10.1007/s10681-006-9114-7
CrossRef Google Scholar
|
[103]
|
He Y, Liu C, Zhu L, Fu M, Sun Y, et al. 2021. Jasmonic acid plays a pivotal role in pollen development and fertility regulation in different types of P(T)GMS rice lines. International Journal of Molecular Sciences 22:7926 doi: 10.3390/ijms22157926
CrossRef Google Scholar
|
[104]
|
Yang Q, Nong X, Xu J, Huang F, Wang F, et al. 2021. Unraveling the genetic basis of fertility restoration for cytoplasmic male sterile line WNJ01A originated from Brassica juncea in Brassica napus. Frontiers in Plant Science 12:721980 doi: 10.3389/fpls.2021.721980
CrossRef Google Scholar
|
[105]
|
Jin ZY, Zhe T, Jun CH, You J. 1996. Relationship between male fertility and endogenous phytohormones in photoperiod sensitive genic male sterile rice. Journal of Integrative Plant Biology 38:936−41
Google Scholar
|
[106]
|
Fuglie K. 2021. Climate change upsets agriculture. Nature Climate Change 11:294−95 doi: 10.1038/s41558-021-01017-6
CrossRef Google Scholar
|
[107]
|
Dubey PK, Singh GS, Abhilash PC. 2016. Agriculture in a changing climate. Journal of Cleaner Production 113:1046−47 doi: 10.1016/j.jclepro.2015.11.067
CrossRef Google Scholar
|
[108]
|
Shi J, An G, Weber APM, Zhang D. 2023. Prospects for rice in 2050. Plant, Cell & Environment 46:1037−45 doi: 10.1111/pce.14565
CrossRef Google Scholar
|
[109]
|
Huang X, Han B. 2014. Natural variations and genome-wide association studies in crop plants. Annual Review of Plant Biology 65:531−51 doi: 10.1146/annurev-arplant-050213-035715
CrossRef Google Scholar
|
[110]
|
Fernie AR, Yan J. 2019. De novo domestication: an alternative route toward new crops for the future. Molecular Plant 12:615−31 doi: 10.1016/j.molp.2019.03.016
CrossRef Google Scholar
|
[111]
|
Sun M, Huang X, Yang J, Guan Y, Yang Z. 2013. Arabidopsis RPG1 is important for primexine deposition and functions redundantly with RPG2 for plant fertility at the late reproductive stage. Plant Reproduction 26:83−91 doi: 10.1007/s00497-012-0208-1
CrossRef Google Scholar
|
[112]
|
Guan Y, Huang X, Zhu J, Gao J, Zhang H, et al. 2008. RUPTURED POLLEN GRAIN1, a member of the MtN3/saliva gene family, is crucial for exine pattern formation and cell integrity of microspores in Arabidopsis. Plant Physiology 147:852−63 doi: 10.1104/pp.108.118026
CrossRef Google Scholar
|
[113]
|
Ma Z, Leng Y, Chen G, Zhou P, Ye D, et al. 2015. The THERMOSENSITIVE MALE STERILE 1 interacts with the BiPs via DnaJ domain and stimulates their ATPase enzyme activities in Arabidopsis. PLoS One 10:e0132500 doi: 10.1371/journal.pone.0132500
CrossRef Google Scholar
|
[114]
|
Yang K, Xia C, Liu X, Dou X, Wang W, et al. 2009. A mutation in THERMOSENSITIVE MALE STERILE 1, encoding a heat shock protein with DnaJ and PDI domains, leads to thermosensitive gametophytic male sterility in Arabidopsis. The Plant Journal 57:870−82 doi: 10.1111/j.1365-313X.2008.03732.x
CrossRef Google Scholar
|
[115]
|
Deng Y, Srivastava R, Quilichini TD, Dong H, Bao Y, et al. 2016. IRE1, a component of the unfolded protein response signaling pathway, protects pollen development in Arabidopsis from heat stress. The Plant Journal 88:193−204 doi: 10.1111/tpj.13239
CrossRef Google Scholar
|
[116]
|
Mitterreiter MJ, Bosch FA, Brylok T, Schwenkert S. 2020. The ER luminal C-terminus of AtSec62 is critical for male fertility and plant growth in Arabidopsis thaliana. The Plant Journal 101:5−17 doi: 10.1111/tpj.14483
CrossRef Google Scholar
|
[117]
|
Mou Z, Wang X, Fu Z, Dai Y, Han C, et al. 2002. Silencing of phosphoethanolamine N-methyltransferase results in temperature-sensitive male sterility and salt hypersensitivity in Arabidopsis. The Plant Cell 14:2031−43 doi: 10.1105/tpc.001701
CrossRef Google Scholar
|
[118]
|
Wang H, Lu Y, Jiang T, Berg H, Li C, et al. 2013. The Arabidopsis U-box/ARM repeat E3 ligase AtPUB4 influences growth and degeneration of tapetal cells, and its mutation leads to conditional male sterility. The Plant Journal 74:511−23 doi: 10.1111/tpj.12146
CrossRef Google Scholar
|
[119]
|
Huang H, Wang C, Tian H, Sun Y, Xie D, et al. 2014. Amino acid substitutions of GLY98, LEU245 and GLU543 in COI1 distinctively affect jasmonate-regulated male fertility in Arabidopsis. Science China Life Sciences 57:145−54 doi: 10.1007/s11427-013-4590-1
CrossRef Google Scholar
|
[120]
|
Wei D, Liu M, Chen H, Zheng Y, Liu Y, et al. 2018. INDUCER OF CBF EXPRESSION 1 is a male fertility regulator impacting anther dehydration in Arabidopsis. PLoS Genetics 14:e1007695 doi: 10.1371/journal.pgen.1007695
CrossRef Google Scholar
|
[121]
|
Ishiguro S, Nishimori Y, Yamada M, Saito H, Suzuki T, et al. 2010. The Arabidopsis FLAKY POLLEN1 gene encodes a 3-Hydroxy-3-Methylglutaryl-coenzyme a synthase required for development of tapetum-specific organelles and fertility of pollen grains. Plant and Cell Physiology 51:896−911 doi: 10.1093/pcp/pcq068
CrossRef Google Scholar
|
[122]
|
Wang Y, Zha X, Zhang S, Qian X, Dong X, et al. 2010. Down-regulation of the OsPDCD5 gene induced photoperiod-sensitive male sterility in rice. Plant Science 178:221−28 doi: 10.1016/j.plantsci.2009.12.001
CrossRef Google Scholar
|
[123]
|
Jiang S, Cai M, Ramachandran S. 2007. ORYZA SATIVA MYOSIN XI B controls pollen development by photoperiod-sensitive protein localizations. Developmental Biology 304:579−92 doi: 10.1016/j.ydbio.2007.01.008
CrossRef Google Scholar
|
[124]
|
Chueasiri C, Chunthong K, Pitnjam K, Chakhonkaen S, Sangarwut N, et al. 2014. Rice ORMDL controls sphingolipid homeostasis affecting fertility resulting from abnormal pollen development. PLoS One 9:e106386 doi: 10.1371/journal.pone.0106386
CrossRef Google Scholar
|
[125]
|
Yan W, Yuan S, Zu Y, Chang Z, Li Y, et al. 2023. Ornithine δ-aminotransferase OsOAT is critical for male fertility and cold tolerance during rice plant development. The Plant Journal 14(6):1301−18 doi: 10.1111/tpj.16194
CrossRef Google Scholar
|
[126]
|
Lin S, Liu Z, Sun S, Xue F, Li H, et al. 2023. Rice HEAT SHOCK PROTEIN60-3B maintains male fertility under high temperature by starch granule biogenesis. Plant Physiology 192:2301−17 doi: 10.1093/plphys/kiad136
CrossRef Google Scholar
|
[127]
|
Li J, Zhang H, Si X, Tian Y, Chen K, et al. 2017. Generation of thermosensitive male-sterile maize by targeted knockout of the ZmTMS5 gene. Journal of Genetics and Genomics 44:465−68 doi: 10.1016/j.jgg.2017.02.002
CrossRef Google Scholar
|
[128]
|
Huang W, Li Y, Du Y, Pan L, Huang Y, et al. 2022. Maize cytosolic invertase INVAN6 ensures faithful meiotic progression under heat stress. New Phytologist 236:2172−88 doi: 10.1111/nph.18490
CrossRef Google Scholar
|
[129]
|
Fernández-Gómez J, Talle B, Wilson ZA. 2020. Increased expression of the MALE STERILITY1 transcription factor gene results in temperature-sensitive male sterility in barley. Journal of Experimental Botany 71:6328−39 doi: 10.1093/jxb/eraa382
CrossRef Google Scholar
|