[1]
|
Hojsgaard D, Hörandl E. 2019. The rise of apomixis in natural plant populations. Frontiers in Plant Science 10:358 doi: 10.3389/fpls.2019.00358
CrossRef Google Scholar
|
[2]
|
Wang N, Song X, Ye J, Zhang S, Cao Z, et al. 2022. Structural variation and parallel evolution of apomixis in citrus during domestication and diversification. National Science Review 9:nwac114 doi: 10.1093/nsr/nwac114
CrossRef Google Scholar
|
[3]
|
Wang X, Xu Y, Zhang S, Cao L, Huang Y, et al. 2017. Genomic analyses of primitive, wild and cultivated citrus provide insights into asexual reproduction. Nature Genetics 49:765−72 doi: 10.1038/ng.3839
CrossRef Google Scholar
|
[4]
|
Smith J. 1841. Notice of a plant which produces perfect seeds without any apparent action of pollen. Transactions of the Linnean Society of London 18:509−12 doi: 10.1111/j.1095-8339.1838.tb00200.x
CrossRef Google Scholar
|
[5]
|
Hojsgaard D, Klatt S, Baier R, Carman JG, Hörandl E. 2014. Taxonomy and biogeography of apomixis in angiosperms and associated biodiversity characteristics. Critical Reviews in Plant Sciences 33:414−27 doi: 10.1080/07352689.2014.898488
CrossRef Google Scholar
|
[6]
|
Liu C, He Z, Zhang Y, Hu F, Li M, et al. 2023. Synthetic apomixis enables stable transgenerational transmission of heterotic phenotypes in hybrid rice. Plant Communications 4:100470 doi: 10.1016/j.xplc.2022.100470
CrossRef Google Scholar
|
[7]
|
Jiang C, Sun J, Li R, Yan S, Chen W, et al. 2022. A reactive oxygen species burst causes haploid induction in maize. Molecular Plant 15:943−55 doi: 10.1016/j.molp.2022.04.001
CrossRef Google Scholar
|
[8]
|
Huang X, Yang S, Gong J, Zhao Q, Feng Q, et al. 2016. Genomic architecture of heterosis for yield traits in rice. Nature 537:629−33 doi: 10.1038/nature19760
CrossRef Google Scholar
|
[9]
|
Ye J, Cui X. 2019. Next-generation crop breeding methods. Molecular Plant 12:470−71 doi: 10.1016/j.molp.2019.03.007
CrossRef Google Scholar
|
[10]
|
Savidan Y. 2001. Gametophytic Apomixis. In Current Trends in the Embryology of Angiosperms, eds. Bhojwani SS, Soh WY. Netherlands: Springer Dordrecht. pp. 419−33. https://doi.org/10.1007/978-94-017-1203-3_16
|
[11]
|
Spillane C, Curtis MD, Grossniklaus U. 2004. Apomixis technology development—virgin births in farmers' fields? Nature Biotechnology 22:687−91 doi: 10.1038/nbt976
CrossRef Google Scholar
|
[12]
|
Mieulet D, Jolivet S, Rivard M, Cromer L, Vernet A, et al. 2016. Turning rice meiosis into mitosis. Cell Research 26:1242−54 doi: 10.1038/cr.2016.117
CrossRef Google Scholar
|
[13]
|
Mercier R, Mézard C, Jenczewski E, Macaisne N, Grelon M. 2015. The molecular biology of meiosis in plants. Annual Review of Plant Biology 66:297−327 doi: 10.1146/annurev-arplant-050213-035923
CrossRef Google Scholar
|
[14]
|
Cheung AY, Duan Q, Li C, Liu MCJ, Wu HM. 2022. Pollen–pistil interactions: It takes two to tangle but a molecular cast of many to deliver. Current Opinion in Plant Biology 69:102279 doi: 10.1016/j.pbi.2022.102279
CrossRef Google Scholar
|
[15]
|
Dresselhaus T, Sprunck S, Wessel GM. 2016. Fertilization mechanisms in flowering plants. Current Biology 26:R125−R139 doi: 10.1016/j.cub.2015.12.032
CrossRef Google Scholar
|
[16]
|
d'Erfurth I, Jolivet S, Froger N, Catrice O, Novatchkova M, et al. 2009. Turning meiosis into mitosis. PLoS Biology 7:e1000124 doi: 10.1371/journal.pbio.1000124
CrossRef Google Scholar
|
[17]
|
Wang C, Liu Q, Shen Y, Hua Y, Wang J, et al. 2019. Clonal seeds from hybrid rice by simultaneous genome engineering of meiosis and fertilization genes. Nature Biotechnology 37:283−86 doi: 10.1038/s41587-018-0003-0
CrossRef Google Scholar
|
[18]
|
Khanday I, Skinner D, Yang B, Mercier R, Sundaresan V. 2019. A male-expressed rice embryogenic trigger redirected for asexual propagation through seeds. Nature 565:91−95 doi: 10.1038/s41586-018-0785-8
CrossRef Google Scholar
|
[19]
|
de Massy B. 2013. Initiation of meiotic recombination: how and where? Conservation and specificities among eukaryotes Annual Review of Genetics 47:563−99 doi: 10.1146/annurev-genet-110711-155423
CrossRef Google Scholar
|
[20]
|
Drouaud J, Khademian H, Giraut L, Zanni V, Bellalou S, et al. 2013. Contrasted patterns of crossover and non-crossover at Arabidopsis thaliana meiotic recombination hotspots. PLOS Genetics 9:e1003922 doi: 10.1371/journal.pgen.1003922
CrossRef Google Scholar
|
[21]
|
Smeds L, Mugal CF, Qvarnström A, Ellegren H. 2016. High-resolution mapping of crossover and non-crossover recombination events by whole-genome re-sequencing of an avian pedigree. PLoS Genetics 12:e1006044 doi: 10.1371/journal.pgen.1006044
CrossRef Google Scholar
|
[22]
|
Myers S, Spencer CCA, Auton A, Bottolo L, Freeman C, et al. 2006. The distribution and causes of meiotic recombination in the human genome. Biochemical Society Transactions 34:526−30 doi: 10.1042/BST0340526
CrossRef Google Scholar
|
[23]
|
Comeron JM, Ratnappan R, Bailin S. 2012. The many landscapes of recombination in Drosophila melanogaster. PLoS Genetics 8:e1002905 doi: 10.1371/journal.pgen.1002905
CrossRef Google Scholar
|
[24]
|
Benyahya F, Nadaud I, Da Ines O, Rimbert H, White C, et al. 2020. SPO11.2 is essential for programmed double-strand break formation during meiosis in bread wheat (Triticum aestivum L.). The Plant Journal 104:30−43 doi: 10.1111/tpj.14903
CrossRef Google Scholar
|
[25]
|
Stacey NJ, Kuromori T, Azumi Y, Roberts G, Breuer C, et al. 2006. Arabidopsis SPO11-2 functions with SPO11-1 in meiotic recombination. The Plant Journal 48:206−16 doi: 10.1111/j.1365-313X.2006.02867.x
CrossRef Google Scholar
|
[26]
|
Fayos I, Meunier AC, Vernet A, Navarro-Sanz S, Portefaix M, et al. 2020. Assessment of the roles of SPO11-2 and SPO11-4 in meiosis in rice using CRISPR/Cas9 mutagenesis. Journal of Experimental Botany 71:7046−58 doi: 10.1093/jxb/eraa391
CrossRef Google Scholar
|
[27]
|
Steckenborn S, Cuacos M, Ayoub MA, Feng C, Schubert V, et al. 2023. The meiotic topoisomerase VI B subunit (MTOPVIB) is essential for meiotic DNA double-strand break formation in barley (Hordeum vulgare L.). Plant Reproduction 36:1−15 doi: 10.1007/s00497-022-00444-5
CrossRef Google Scholar
|
[28]
|
Jolivet S, Vezon D, Froger N, Mercier R. 2006. Non conservation of the meiotic function of the Ski8/Rec103 homolog in Arabidopsis. Genes Cells 11:615−22 doi: 10.1111/j.1365-2443.2006.00972.x
CrossRef Google Scholar
|
[29]
|
Hyppa RW, Cromie GA, Smith GR. 2008. Indistinguishable landscapes of meiotic DNA breaks in rad50+ and rad50S strains of fission yeast revealed by a novel rad50+ recombination intermediate. PLoS Genetics 4:e1000267 doi: 10.1371/journal.pgen.1000267
CrossRef Google Scholar
|
[30]
|
Puizina J, Siroky J, Mokros P, Schweizer D, Riha K. 2004. Mre11 deficiency in Arabidopsis is associated with chromosomal instability in somatic cells and Spo11-Dependent genome fragmentation during meiosis. The Plant Cell 16:1968−78 doi: 10.1105/tpc.104.022749
CrossRef Google Scholar
|
[31]
|
Shi W, Ji J, Xue Z, Zhang F, Miao Y, et al. 2021. PRD1, a homologous recombination initiation factor, is involved in spindle assembly in rice meiosis. New Phytologist 230:585−600 doi: 10.1111/nph.17178
CrossRef Google Scholar
|
[32]
|
Wang Z, Zhang Z, Zheng D, Zhang T, Li XL, et al. 2022. Efficient and genotype independent maize transformation using pollen transfected by DNA-coated magnetic nanoparticles. Journal of Integrative Plant Biology 64:1145−56 doi: 10.1111/jipb.13263
CrossRef Google Scholar
|
[33]
|
De Muyt A, Vezon D, Gendrot G, Gallois JL, Stevens R, et al. 2007. AtPRD1 is required for meiotic double strand break formation in Arabidopsis thaliana. The EMBO Journal 26:4126−37 doi: 10.1038/sj.emboj.7601815
CrossRef Google Scholar
|
[34]
|
De Muyt A, Pereira L, Vezon D, Chelysheva L, Gendrot G, et al. 2009. A high throughput genetic screen identifies new early meiotic recombination functions in Arabidopsis thaliana. PLOS Genetics 5:e1000654 doi: 10.1371/journal.pgen.1000654
CrossRef Google Scholar
|
[35]
|
Zhang C, Song Y, Cheng Z, Wang Y, Zhu J, et al. 2012. The Arabidopsis thaliana DSB formation (AtDFO) gene is required for meiotic double-strand break formation. The Plant Journal 72:271−81 doi: 10.1111/j.1365-313X.2012.05075.x
CrossRef Google Scholar
|
[36]
|
Nonomura KI, Nakano M, Fukuda T, Eiguchi M, Miyao A, et al. 2004. The novel gene HOMOLOGOUS PAIRING ABERRATION IN RICE MEIOSIS1 of rice encodes a putative coiled-coil protein required for homologous chromosome pairing in meiosis. The Plant Cell 16:1008−20 doi: 10.1105/tpc.020701
CrossRef Google Scholar
|
[37]
|
Miao C, Tang D, Zhang H, Wang M, Li Y, et al. 2013. CENTRAL REGION COMPONENT1, a novel synaptonemal complex component, is essential for meiotic recombination initiation in rice. The Plant Cell 25:2998−3009 doi: 10.1105/tpc.113.113175
CrossRef Google Scholar
|
[38]
|
Ji J, Tang D, Shen Y, Xue Z, Wang H, et al. 2016. P31comet, a member of the synaptonemal complex, participates in meiotic DSB formation in rice. PNAS 113:10577−82 doi: 10.1073/pnas.1607334113
CrossRef Google Scholar
|
[39]
|
Wu Z, Ji J, Tang D, Wang H, Shen Y, et al. 2015. OsSDS is essential for DSB formation in rice meiosis. Frontiers in Plant Science 6:21 doi: 10.3389/fpls.2015.00021
CrossRef Google Scholar
|
[40]
|
Casari E, Rinaldi C, Marsella A, Gnugnoli M, Colombo CV, et al. 2019. Processing of DNA Double-Strand Breaks by the MRX complex in a chromatin context. Frontiers in Molecular Biosciences 6:43 doi: 10.3389/fmolb.2019.00043
CrossRef Google Scholar
|
[41]
|
Uanschou C, Siwiec T, Pedrosa-Harand A, Kerzendorfer C, Sanchez-Moran E, et al. 2007. A novel plant gene essential for meiosis is related to the human CtIP and the yeast COM1/SAE2 gene. The EMBO Journal 26:5061−70 doi: 10.1038/sj.emboj.7601913
CrossRef Google Scholar
|
[42]
|
Neale MJ, Pan J, Keeney S. 2005. Endonucleolytic processing of covalent protein-linked DNA double-strand breaks. Nature 436:1053−57 doi: 10.1038/nature03872
CrossRef Google Scholar
|
[43]
|
Hinch AG, Becker PW, Li T, Moralli D, Zhang G, et al. 2020. The configuration of RPA, RAD51, and DMC1 binding in meiosis reveals the nature of critical recombination intermediates. Molecular Cell 79:689−701. E10 doi: 10.1016/j.molcel.2020.06.015
CrossRef Google Scholar
|
[44]
|
Berchowitz LE, Francis KE, Bey AL, Copenhaver GP. 2007. The role of AtMUS81 in interference-insensitive crossovers in A. thaliana. PLoS Genetics 3:e0030132 doi: 10.1371/journal.pgen.0030132
CrossRef Google Scholar
|
[45]
|
Gutiérrez Pinzón Y, González Kise JK, Rueda P, Ronceret A. 2021. The formation of bivalents and the control of plant meiotic recombination. Frontiers in Plant Science 12:717423 doi: 10.3389/fpls.2021.717423
CrossRef Google Scholar
|
[46]
|
Chelysheva L, Vezon D, Belcram K, Gendrot G, Grelon M. 2008. The Arabidopsis BLAP75/Rmi1 homologue plays crucial roles in meiotic double-strand break repair. PLoS Genetics 4:e1000309 doi: 10.1371/journal.pgen.1000309
CrossRef Google Scholar
|
[47]
|
Hartung F, Suer S, Knoll A, Wurz-Wildersinn R, Puchta H. 2008. Topoisomerase 3α and RMI1 suppress somatic crossovers and are essential for resolution of meiotic recombination intermediates in Arabidopsis thaliana. PLoS Genetics 4:e1000285 doi: 10.1371/journal.pgen.1000285
CrossRef Google Scholar
|
[48]
|
Girard C, Crismani W, Froger N, Mazel J, Lemhemdi A, et al. 2014. FANCM-associated proteins MHF1 and MHF2, but not the other Fanconi anemia factors, limit meiotic crossovers. Nucleic Acids Research 42:9087−95 doi: 10.1093/nar/gku614
CrossRef Google Scholar
|
[49]
|
Crismani W, Girard C, Froger N, Pradillo M, Santos JL, et al. 2012. FANCM limits meiotic crossovers. Science 336:1588−90 doi: 10.1126/science.1220381
CrossRef Google Scholar
|
[50]
|
Knoll A, Higgins JD, Seeliger K, Reha SJ, Dangel NJ, et al. 2012. The Fanconi anemia ortholog FANCM ensures ordered homologous recombination in both somatic and meiotic cells in Arabidopsis. The Plant Cell 24:1448−64 doi: 10.1105/tpc.112.096644
CrossRef Google Scholar
|
[51]
|
Chelysheva L, Diallo S, Vezon D, Gendrot G, Vrielynck N, et al. 2005. AtREC8 and AtSCC3 are essential to the monopolar orientation of the kinetochores during meiosis. Journal of Cell Science 118:4621−32 doi: 10.1242/jcs.02583
CrossRef Google Scholar
|
[52]
|
Shao T, Tang D, Wang K, Wang M, Che L, et al. 2011. OsREC8 is essential for chromatid cohesion and metaphase I monopolar orientation in rice meiosis. Plant Physiology 156:1386−96 doi: 10.1104/pp.111.177428
CrossRef Google Scholar
|
[53]
|
Sun M, Nishino T, Marko JF. 2013. The SMC1-SMC3 cohesin heterodimer structures DNA through supercoiling-dependent loop formation. Nucleic Acids Research 41:6149−60 doi: 10.1093/nar/gkt303
CrossRef Google Scholar
|
[54]
|
Zamariola L, de Storme N, Tiang CL, Armstrong SJ, Franklin FCH, et al. 2013. SGO1 but not SGO2 is required for maintenance of centromere cohesion in Arabidopsis thaliana meiosis. Plant Reproduction 26:197−208 doi: 10.1007/s00497-013-0231-x
CrossRef Google Scholar
|
[55]
|
Wang M, Tang D, Luo Q, Jin Y, Shen Y, et al. 2012. BRK1, a Bub1-Related Kinase, is essential for generating proper tension between homologous kinetochores at metaphase I of rice meiosis. The Plant Cell 24:4961−73 doi: 10.1105/tpc.112.105874
CrossRef Google Scholar
|
[56]
|
Marston AL, Amon A. 2004. Meiosis: cell-cycle controls shuffle and deal. Nature Reviews Molecular Cell Biology 5:983−97 doi: 10.1038/nrm1526
CrossRef Google Scholar
|
[57]
|
Harashima H, Dissmeyer N, Schnittger A. 2013. Cell cycle control across the eukaryotic kingdom. Trends in Cell Biology 23:345−56 doi: 10.1016/j.tcb.2013.03.002
CrossRef Google Scholar
|
[58]
|
Pesin JA, Orr-Weaver TL. 2008. Regulation of APC/C activators in mitosis and meiosis. Annual Review of Cell and Developmental Biology 24:475−99 doi: 10.1146/annurev.cellbio.041408.115949
CrossRef Google Scholar
|
[59]
|
Fisher RP, Morgan DO. 1994. A novel cyclin associates with M015/CDK7 to form the CDK-activating kinase. Cell 78:713−24 doi: 10.1016/0092-8674(94)90535-5
CrossRef Google Scholar
|
[60]
|
d'Erfurth I, Cromer L, Jolivet S, Girard C, Horlow C, et al. 2010. The CYCLIN-A CYCA1;2/TAM is required for the meiosis I to meiosis II transition and cooperates with OSD1 for the prophase to first meiotic division transition. PLoS Genetics 6:e1000989 doi: 10.1371/journal.pgen.1000989
CrossRef Google Scholar
|
[61]
|
Cifuentes M, Jolivet S, Cromer L, Harashima H, Bulankova P, et al. 2016. TDM1 regulation determines the number of meiotic divisions. PLoS Genetics 12:e1005856 doi: 10.1371/journal.pgen.1005856
CrossRef Google Scholar
|
[62]
|
Dissmeyer N, Nowack MK, Pusch S, Stals H, Inzé D, et al. 2007. T-Loop phosphorylation of Arabidopsis CDKA;1 is required for its function and can be partially substituted by an aspartate residue. The Plant Cell 19:972−85 doi: 10.1105/tpc.107.050401
CrossRef Google Scholar
|
[63]
|
Cairo A, Vargova A, Shukla N, Capitao C, Mikulkova P, et al. 2022. Meiotic exit in Arabidopsis is driven by P-body–mediated inhibition of translation. Science 377:629−34 doi: 10.1126/science.abo0904
CrossRef Google Scholar
|
[64]
|
Yao X, Hu W, Yang Z. 2022. The contributions of sporophytic tapetum to pollen formation. Seed Biology 1:5 doi: 10.48130/seedbio-2022-0005
CrossRef Google Scholar
|
[65]
|
Yang W, Shi D, Chen Y. 2010. Female gametophyte development in flowering plants. Annual Review of Plant Biology 61:89−108 doi: 10.1146/annurev-arplant-042809-112203
CrossRef Google Scholar
|
[66]
|
Hafidh S, Honys D. 2021. Reproduction multitasking: the male gametophyte. Annual Review of Plant Biology 72:581−614 doi: 10.1146/annurev-arplant-080620-021907
CrossRef Google Scholar
|
[67]
|
Sprunck S. 2020. Twice the fun, double the trouble: gamete interactions in flowering plants. Current Opinion in Plant Biology 53:106−16 doi: 10.1016/j.pbi.2019.11.003
CrossRef Google Scholar
|
[68]
|
Maruyama D, Ohtsu M, Higashiyama T. 2016. Cell fusion and nuclear fusion in plants. Seminars in Cell & Developmental Biology 60:127−35 doi: 10.1016/j.semcdb.2016.07.024
CrossRef Google Scholar
|
[69]
|
Hamamura Y, Nishimaki M, Takeuchi H, Geitmann A, Kurihara D, et al. 2014. Live imaging of calcium spikes during double fertilization in Arabidopsis. Nature Communications 5:4722 doi: 10.1038/ncomms5722
CrossRef Google Scholar
|
[70]
|
Mori T, Igawa T, Tamiya G, Miyagishima SY, Berger F. 2014. Gamete attachment requires GEX2 for successful fertilization inArabidopsis. Current Biology 24:170−75 doi: 10.1016/j.cub.2013.11.030
CrossRef Google Scholar
|
[71]
|
Misamore MJ, Gupta S, Snell WJ. 2003. The Chlamydomonas Fus1 protein is present on the mating type plus fusion organelle and required for a critical membrane adhesion event during fusion with minus gametes. Molecular Biology of the Cell 14:2530−42 doi: 10.1091/mbc.e02-12-0790
CrossRef Google Scholar
|
[72]
|
Hirohashi N, Kamei N, Kubo H, Sawada H, Matsumoto M, et al. 2008. Egg and sperm recognition systems during fertilization. Development, Growth & Differentiation 50:S221−S238 doi: 10.1111/j.1440-169X.2008.01017.x
CrossRef Google Scholar
|
[73]
|
Pan J, Snell WJ. 2000. Signal transduction during fertilization in the unicellular green alga, Chlamydomonas. Current Opinion in Microbiology 3:596−602 doi: 10.1016/S1369-5274(00)00146-6
CrossRef Google Scholar
|
[74]
|
Sprunck S, Rademacher S, Vogler F, Gheyselinck J, Grossniklaus U, et al. 2012. Egg cell-secreted EC1 triggers sperm cell activation during double fertilization. Science 338:1093−97 doi: 10.1126/science.1223944
CrossRef Google Scholar
|
[75]
|
Johnson MA, von Besser K, Zhou Q, Smith E, Aux G, et al. 2004. Arabidopsis hapless mutations define essential gametophytic functions. Genetics 168:971−82 doi: 10.1534/genetics.104.029447
CrossRef Google Scholar
|
[76]
|
Cyprys P, Lindemeier M, Sprunck S. 2019. Gamete fusion is facilitated by two sperm cell-expressed DUF679 membrane proteins. Nature Plants 5:253−57 doi: 10.1038/s41477-019-0382-3
CrossRef Google Scholar
|
[77]
|
Huang J, Ju Y, Wang X, Zhang Q, Sodmergen. 2015. A one-step rectification of sperm cell targeting ensures the success of double fertilization. Journal of Integrative Plant Biology 57:496−503 doi: 10.1111/jipb.12322
CrossRef Google Scholar
|
[78]
|
Mori T, Kuroiwa H, Higashiyama T, Kuroiwa T. 2006. GENERATIVE CELL SPECIFIC 1 is essential for angiosperm fertilization. Nature Cell Biology 8:64−71 doi: 10.1038/ncb1345
CrossRef Google Scholar
|
[79]
|
Liu Y, Tewari R, Ning J, Blagborough AM, Garbom S, et al. 2008. The conserved plant sterility gene HAP2 functions after attachment of fusogenic membranes in Chlamydomonas and Plasmodium gametes. Genes & Development 22:1051−68 doi: 10.1101/gad.1656508
CrossRef Google Scholar
|
[80]
|
Fedry J, Forcina J, Legrand P, Péhau-Arnaudet G, Haouz A, et al. 2018. Evolutionary diversification of the HAP2 membrane insertion motifs to drive gamete fusion across eukaryotes. PLoS Biology 16:e2006357 doi: 10.1371/journal.pbio.2006357
CrossRef Google Scholar
|
[81]
|
Kielian M, Rey FA. 2006. Virus membrane-fusion proteins: more than one way to make a hairpin. Nature Reviews Microbiology 4:67−76 doi: 10.1038/nrmicro1326
CrossRef Google Scholar
|
[82]
|
Wang W, Xiong H, Zhao P, Peng X, Sun MX. 2022. DMP8 and 9 regulate HAP2/GCS1 trafficking for the timely acquisition of sperm fusion competence. PNAS 119:e2207608119 doi: 10.1073/pnas.2207608119
CrossRef Google Scholar
|
[83]
|
Zhang J, Yin J, Luo J, Tang D, Zhu X, et al. 2022. Construction of homozygous diploid potato through maternal haploid induction. aBIOTECH 3:163−68 doi: 10.1007/s42994-022-00080-7
CrossRef Google Scholar
|
[84]
|
Li Y, Li D, Xiao Q, Wang H, Wen J, et al. 2022. An in planta haploid induction system in Brassica napus. Journal of Integrative Plant Biology 64:1140−44 doi: 10.1111/jipb.13270
CrossRef Google Scholar
|
[85]
|
Zhong Y, Wang Y, Chen B, Liu J, Wang D, et al. 2022. Establishment of a dmp based maternal haploid induction system for polyploid Brassica napus and Nicotiana tabacum. Journal of Integrative Plant Biology 64:1281−94 doi: 10.1111/jipb.13244
CrossRef Google Scholar
|
[86]
|
Zhong Y, Chen B, Li M, Wang D, Jiao Y, et al. 2020. A DMP-triggered in vivo maternal haploid induction system in the dicotyledonous Arabidopsis. Nature Plants 6:466−72 doi: 10.1038/s41477-020-0658-7
CrossRef Google Scholar
|
[87]
|
Zhong Y, Liu C, Qi X, Jiao Y, Wang D, et al. 2019. Mutation of ZmDMP enhances haploid induction in maize. Nature Plants 5:575−80 doi: 10.1038/s41477-019-0443-7
CrossRef Google Scholar
|
[88]
|
Wang N, Xia X, Jiang T, Li L, Zhang P, et al. 2022. In planta haploid induction by genome editing of DMP in the model legume Medicago truncatula. Plant Biotechnology Journal 20:22−24 doi: 10.1111/pbi.13740
CrossRef Google Scholar
|
[89]
|
Chen X, Li Y, Ai G, Chen J, Guo D, et al. 2023. Creation of a watermelon haploid inducer line via ClDMP3-mediated single fertilization of the central cell. Horticulture Research 10:uhad081 doi: 10.1093/hr/uhad081
CrossRef Google Scholar
|
[90]
|
Zhang X, Zhang L, Zhang J, Jia M, Cao L, et al. 2022. Haploid induction in allotetraploid tobacco using DMPs mutation. Planta 255:98 doi: 10.1007/s00425-022-03877-4
CrossRef Google Scholar
|
[91]
|
Zhao X, Yuan K, Liu Y, Zhang N, Yang L, et al. 2022. In vivo maternal haploid induction based on genome editing of DMP in Brassica oleracea. Plant Biotechnology Journal 20:2242−44 doi: 10.1111/pbi.13934
CrossRef Google Scholar
|
[92]
|
Yu X, Zhang X, Zhao P, Peng X, Chen H, et al. 2021. Fertilized egg cells secrete endopeptidases to avoid polytubey. Nature 592:433−37 doi: 10.1038/s41586-021-03387-5
CrossRef Google Scholar
|
[93]
|
Zhang X, Shi C, Li S, Zhang B, Luo P, et al. 2023. A female in vivo haploid-induction system via mutagenesis of egg cell-specific peptidases. Molecular Plant 16:471−80 doi: 10.1016/j.molp.2023.01.001
CrossRef Google Scholar
|
[94]
|
Jiang J, Stührwohldt N, Liu T, Huang Q, Li L, et al. 2022. Egg cell-secreted aspartic proteases ECS1/2 promote gamete attachment to prioritize the fertilization of egg cells over central cells in Arabidopsis. Journal of Integrative Plant Biology 64:2047−59 doi: 10.1111/jipb.13371
CrossRef Google Scholar
|
[95]
|
Zhang X, Yu X, Shi C, Dresselhaus T, Sun MX. 2023. Do egg cell-secreted aspartic proteases promote gamete attachment? Journal of Integrative Plant Biology 65:3−6 doi: 10.1111/jipb.13447
CrossRef Google Scholar
|
[96]
|
Jiang J, Qu LJ. 2023. Response to Zhang et al., 'do egg cell-secreted aspartic proteases promote gamete attachment?' Journal of Integrative Plant Biology 65:7−9 doi: 10.1111/jipb.13448
CrossRef Google Scholar
|
[97]
|
Marimuthu MPA, Jolivet S, Ravi M, Pereira L, Davda JN, et al. 2011. Synthetic clonal reproduction through seeds. Science 331:876−76 doi: 10.1126/science.1199682
CrossRef Google Scholar
|
[98]
|
Xiong J, Hu F, Ren J, Huang Y, Liu C, Wang K. 2023. Synthetic apomixis: the beginning of a new era. Current Opinion in Biotechnology 79:102877 doi: 10.1016/j.copbio.2022.102877
CrossRef Google Scholar
|
[99]
|
Ravi M, Chan SWL. 2010. Haploid plants produced by centromere-mediated genome elimination. Nature 464:615−18 doi: 10.1038/nature08842
CrossRef Google Scholar
|
[100]
|
Wang N, Dawe RK. 2018. Centromere size and its relationship to haploid formation in plants. Molecular Plant 11:398−406 doi: 10.1016/j.molp.2017.12.009
CrossRef Google Scholar
|
[101]
|
Lv J, Yu K, Wei J, Gui H, Liu C, et al. 2020. Generation of paternal haploids in wheat by genome editing of the centromeric histone CENH3. Nature Biotechnology 38:1397−401 doi: 10.1038/s41587-020-0728-4
CrossRef Google Scholar
|
[102]
|
Maheshwari S, Tan EH, West A, Franklin FCH, Comai L, Chan SWL. 2015. Naturally occurring differences in CENH3 affect chromosome segregation in zygotic mitosis of hybrids. PLoS Genetics 11:e1004970 doi: 10.1371/journal.pgen.1004970
CrossRef Google Scholar
|
[103]
|
Kuppu S, Tan EH, Nguyen H, Rodgers A, Comai L, et al. 2015. Point mutations in centromeric histone induce post-zygotic incompatibility and uniparental inheritance. PLoS Genetics 11:e1005494 doi: 10.1371/journal.pgen.1005494
CrossRef Google Scholar
|
[104]
|
Kelliher T, Starr D, Wang W, McCuiston J, Zhong H, et al. 2016. Maternal haploids are preferentially induced by CENH3-tailswap transgenic complementation in maize. Frontiers in Plant Science 7:414 doi: 10.3389/fpls.2016.00414
CrossRef Google Scholar
|
[105]
|
Wang Z, Chen M, Yang H, Hu Z, Yu Y, et al. 2023. A simple and highly efficient strategy to induce both paternal and maternal haploids through temperature manipulation. Nature Plants 9:699−705 doi: 10.1038/s41477-023-01389-x
CrossRef Google Scholar
|
[106]
|
Inagaki MN, Hash CT. 1998. Production of haploids in bread wheat, durum wheat and hexaploid triticale crossed with pearl millet. Plant Breeding 117:485−87 doi: 10.1111/j.1439-0523.1998.tb01978.x
CrossRef Google Scholar
|
[107]
|
Inagaki M, Mujeeb-Kazi A. 1995. Comparison of polyhaploid production frequencies in crosses of hexaploid wheat with maize, pearl millet and sorghuml. Japanese Journal of Breeding 45:157−61 doi: 10.1270/jsbbs1951.45.157
CrossRef Google Scholar
|
[108]
|
Kasha KJ, Kao KN. 1970. High frequency haploid production in barley (Hordeum vulgare L.). Nature 225:874−76 doi: 10.1038/225874a0
CrossRef Google Scholar
|
[109]
|
Laurie DA. 1989. The frequency of fertilization in wheat × pearl millet crosses. Genome 32:1063−67 doi: 10.1139/g89-554
CrossRef Google Scholar
|
[110]
|
Gernand D, Rutten T, Varshney A, Rubtsova M, Prodanovic S, et al. 2005. Uniparental chromosome elimination at mitosis and interphase in wheat and pearl millet crosses involves micronucleus formation, progressive heterochromatinization, and DNA fragmentation. The Plant Cell 17:2431−38 doi: 10.1105/tpc.105.034249
CrossRef Google Scholar
|
[111]
|
Mochida K, Tsujimoto H, Sasakuma T. 2004. Confocal analysis of chromosome behavior in wheat × maize zygotes. Genome 47:199−205 doi: 10.1139/g03-123
CrossRef Google Scholar
|
[112]
|
Coe EH Jr. 1959. A line of maize with high haploid frequency. The American Naturalist 93:381−82 doi: 10.1086/282098
CrossRef Google Scholar
|
[113]
|
Liu C, Li X, Meng D, Zhong Y, Chen C, et al. 2017. A 4-bp insertion at ZmPLA1 encoding a putative phospholipase a generates haploid induction in maize. Molecular Plant 10:520−22 doi: 10.1016/j.molp.2017.01.011
CrossRef Google Scholar
|
[114]
|
Gilles LM, Khaled A, Laffaire JB, Chaignon S, Gendrot G, et al. 2017. Loss of pollen-specific phospholipase NOT LIKE DAD triggers gynogenesis in maize. The EMBO Journal 36:707−17 doi: 10.15252/embj.201796603
CrossRef Google Scholar
|
[115]
|
Dong X, Xu X, Miao J, Li L, Zhang D, et al. 2013. Fine mapping of qhir1 influencing in vivo haploid induction in maize. Theoretical and Applied Genetics 126:1713−20 doi: 10.1007/s00122-013-2086-9
CrossRef Google Scholar
|
[116]
|
Kelliher T, Starr D, Richbourg L, Chintamanani S, Delzer B, et al. 2017. MATRILINEAL, a sperm-specific phospholipase, triggers maize haploid induction. Nature 542:105−9 doi: 10.1038/nature20827
CrossRef Google Scholar
|
[117]
|
Li X, Meng D, Chen S, Luo H, Zhang Q, et al. 2017. Single nucleus sequencing reveals spermatid chromosome fragmentation as a possible cause of maize haploid induction. Nature Communications 8:991 doi: 10.1038/s41467-017-00969-8
CrossRef Google Scholar
|
[118]
|
Liu H, Wang K, Jia Z, Gong Q, Lin Z, et al. 2019. Efficient induction of haploid plants in wheat by editing of TaMTL using an optimized Agrobacterium-mediated CRISPR system. Journal of Experimental Botany 71:1337−49 doi: 10.1093/jxb/erz529
CrossRef Google Scholar
|
[119]
|
Cheng Z, Sun Y, Yang S, Zhi H, Yin T, et al. 2021. Establishing in planta haploid inducer line by edited SiMTL in foxtail millet (Setaria italica). Plant Biotechnology Journal 19:1089−91 doi: 10.1111/pbi.13584
CrossRef Google Scholar
|
[120]
|
La Camera S, Geoffroy P, Samaha H, Ndiaye A, Rahim G, et al. 2005. A pathogen-inducible patatin-like lipid acyl hydrolase facilitates fungal and bacterial host colonization in Arabidopsis. The Plant Journal 44:810−25 doi: 10.1111/j.1365-313X.2005.02578.x
CrossRef Google Scholar
|
[121]
|
Jang JH, Seo HS, Widiez T, Lee OR. 2023. Loss-of-function of gynoecium-expressed phospholipase pPLAIIγ triggers maternal haploid induction in Arabidopsis. New Phytologist 238:1813−24 doi: 10.1111/nph.18898
CrossRef Google Scholar
|
[122]
|
Li Y, Lin Z, Yue Y, Zhao H, Fei X, et al. 2021. Loss-of-function alleles of ZmPLD3 cause haploid induction in maize. Nature Plants 7:1579−88 doi: 10.1038/s41477-021-01037-2
CrossRef Google Scholar
|
[123]
|
Conner JA, Mookkan M, Huo H, Chae K, Ozias-Akins P. 2015. A parthenogenesis gene of apomict origin elicits embryo formation from unfertilized eggs in a sexual plant. PNAS 112:11205−10 doi: 10.1073/pnas.1505856112
CrossRef Google Scholar
|
[124]
|
Chen B, Maas L, Figueiredo D, Zhong Y, Reis R, et al. 2022. BABY BOOM regulates early embryo and endosperm development. PNAS 119:e2201761119 doi: 10.1073/pnas.2201761119
CrossRef Google Scholar
|
[125]
|
Horstman A, Willemsen V, Boutilier K, Heidstra R. 2014. AINTEGUMENTA-LIKE proteins: hubs in a plethora of networks. Trends in Plant Science 19:146−57 doi: 10.1016/j.tplants.2013.10.010
CrossRef Google Scholar
|
[126]
|
Akiyama Y, Goel S, Conner JA, Hanna WW, Yamada-Akiyama H, Ozias-Akins P. 2011. Evolution of the apomixis transmitting chromosome in Pennisetum. BMC Evolutionary Biology 11:289 doi: 10.1186/1471-2148-11-289
CrossRef Google Scholar
|
[127]
|
Conner JA, Goel S, Gunawan G, Cordonnier-Pratt MM, Johnson VE, et al. 2008. Sequence analysis of bacterial artificial chromosome clones from the apospory-specific genomic region of Pennisetum and Cenchrus. Plant Physiology 147:1396−411 doi: 10.1104/pp.108.119081
CrossRef Google Scholar
|
[128]
|
Conner JA, Ozias-Akins P. 2017. Apomixis: engineering the ability to harness hybrid vigor in crop plants. Methods in Molecular Biology 1669:17−34 doi: 10.1007/978-1-4939-7286-9_2
CrossRef Google Scholar
|
[129]
|
Zhang Z, Conner J, Guo Y, Ozias-Akins P. 2020. Haploidy in tobacco induced by PsASGR-BBML transgenes via parthenogenesis. Genes 11:1072 doi: 10.3390/genes11091072
CrossRef Google Scholar
|
[130]
|
Conner JA, Podio M, Ozias-Akins P. 2017. Haploid embryo production in rice and maize induced by PsASGR-BBML transgenes. Plant Reproduction 30:41−52 doi: 10.1007/s00497-017-0298-x
CrossRef Google Scholar
|
[131]
|
Horstman A, Bemer M, Boutilier K. 2017. A transcriptional view on somatic embryogenesis. Regeneration 4:201−16 doi: 10.1002/reg2.91
CrossRef Google Scholar
|
[132]
|
Khanday I, Santos-Medellín C, Sundaresan V. 2023. Somatic embryo initiation by rice BABY BOOM1 involves activation of zygote-expressed auxin biosynthesis genes. New Phytologist 238:673−87 doi: 10.1111/nph.18774
CrossRef Google Scholar
|
[133]
|
Vernet A, Meynard D, Lian Q, Mieulet D, Gibert O, et al. 2022. High-frequency synthetic apomixis in hybrid rice. Nature Communications 13:7963 doi: 10.1038/s41467-022-35679-3
CrossRef Google Scholar
|
[134]
|
Wei X, Liu C, Chen X, Lu H, Wang J, et al. 2023. Synthetic apomixis with normal hybrid rice seed production. Molecular Plant 16:489−92 doi: 10.1016/j.molp.2023.01.005
CrossRef Google Scholar
|
[135]
|
Underwood CJ, Vijverberg K, Rigola D, Okamoto S, Oplaat C, et al. 2022. A PARTHENOGENESIS allele from apomictic dandelion can induce egg cell division without fertilization in lettuce. Nature Genetics 54:84−93 doi: 10.1038/s41588-021-00984-y
CrossRef Google Scholar
|
[136]
|
Borges F, Gomes G, Gardner R, Moreno N, McCormick S, et al. 2008. Comparative transcriptomics of Arabidopsis sperm cells. Plant Physiology 148:1168−81 doi: 10.1104/pp.108.125229
CrossRef Google Scholar
|
[137]
|
Hand ML, Koltunow AMG. 2014. The genetic control of apomixis: asexual seed formation. Genetics 197:441−50 doi: 10.1534/genetics.114.163105
CrossRef Google Scholar
|
[138]
|
Noyes RD, Rieseberg LH. 2000. Two independent loci control agamospermy (apomixis) in the triploid flowering plant Erigeron annuus. Genetics 155:379−90 doi: 10.1093/genetics/155.1.379
CrossRef Google Scholar
|
[139]
|
Bicknell RA, Borst NK, Koltunow AM. 2000. Monogenic inheritance of apomixis in two Hieracium species with distinct developmental mechanisms. Heredity 84:228−37 doi: 10.1046/j.1365-2540.2000.00663.x
CrossRef Google Scholar
|
[140]
|
Tas ICQ, van Dijk PJ. 1999. Crosses between sexual and apomictic dandelions (Taraxacum). I. The inheritance of apomixis. Heredity 83(Pt 6):707−14 doi: 10.1046/j.1365-2540.1999.00619.x
CrossRef Google Scholar
|
[141]
|
Henderson ST, Johnson SD, Eichmann J, Koltunow AMG. 2017. Genetic analyses of the inheritance and expressivity of autonomous endosperm formation in Hieracium with different modes of embryo sac and seed formation. Annals of Botany 119:1001−10 doi: 10.1093/aob/mcw262
CrossRef Google Scholar
|
[142]
|
Guitton AE, Page DR, Chambrier P, Lionnet C, Faure JE, et al. 2004. Identification of new members of Fertilisation Independent Seed Polycomb Group pathway involved in the control of seed development in Arabidopsis thaliana. Development 131:2971−81 doi: 10.1242/dev.01168
CrossRef Google Scholar
|
[143]
|
Grossniklaus U, Vielle-Calzada JP, Hoeppner MA, Gagliano WB. 1998. Maternal control of embryogenesis by MEDEA, a Polycomb group gene in Arabidopsis. Science 280:446−50 doi: 10.1126/science.280.5362.446
CrossRef Google Scholar
|
[144]
|
Luo M, Bilodeau P, Koltunow A, Dennis ES, Peacock WJ, et al. 1999. Genes controlling fertilization-independent seed development in Arabidopsis thaliana. Proceedings of the National Academy of Sciences 96:296−301 doi: 10.1073/pnas.96.1.296
CrossRef Google Scholar
|
[145]
|
Ohad N, Yadegari R, Margossian L, Hannon M, Michaeli D, et al. 1999. Mutations in FIE, a WD polycomb group gene, allow endosperm development without fertilization. The Plant Cell 11:407−15 doi: 10.1105/tpc.11.3.407
CrossRef Google Scholar
|
[146]
|
Köhler C, Hennig L, Bouveret R, Gheyselinck J, Grossniklaus U, et al. 2003. Arabidopsis MSI1 is a component of the MEA/FIE Polycomb group complex and required for seed development. The EMBO Journal 22:4804−14 doi: 10.1093/emboj/cdg444
CrossRef Google Scholar
|
[147]
|
Luo M, Bilodeau P, Dennis ES, Peacock WJ, Chaudhury A. 2000. Expression and parent-of-origin effects for FIS2, MEA, and FIE in the endosperm and embryo of developing Arabidopsis seeds. PNAS 97:10637−42 doi: 10.1073/pnas.170292997
CrossRef Google Scholar
|
[148]
|
Chaudhury AM, Ming L, Miller C, Craig S, Dennis ES, et al. 1997. Fertilization-independent seed development in Arabidopsis thaliana. PNAS 94:4223−28 doi: 10.1073/pnas.94.8.4223
CrossRef Google Scholar
|
[149]
|
Cheng X, Pan M, E Z, Zhou Y, Niu B, et al. 2020. Functional divergence of two duplicated Fertilization Independent Endosperm genes in rice with respect to seed development. The Plant Journal 104:124−37 doi: 10.1111/tpj.14911
CrossRef Google Scholar
|
[150]
|
Tonosaki K, Ono A, Kunisada M, Nishino M, Nagata H, et al. 2020. Mutation of the imprinted gene OsEMF2a induces autonomous endosperm development and delayed cellularization in rice. The Plant Cell 33:85−103 doi: 10.1093/plcell/koaa006
CrossRef Google Scholar
|
[151]
|
Springer NM, Danilevskaya ON, Hermon P, Helentjaris TG, Phillips RL, et al. 2002. Sequence relationships, conserved domains, and expression patterns for maize homologs of the polycomb group genes E(z), esc, and E(Pc). Plant Physiology 128:1332−45 doi: 10.1104/pp.010742
CrossRef Google Scholar
|
[152]
|
Luo M, Platten D, Chaudhury A, Peacock WJ, Dennis ES. 2009. Expression, imprinting, and evolution of rice homologs of the polycomb group genes. Molecular Plant 2:711−23 doi: 10.1093/mp/ssp036
CrossRef Google Scholar
|
[153]
|
Kapazoglou A, Tondelli A, Papaefthimiou D, Ampatzidou H, Francia E, et al. 2010. Epigenetic chromatin modifiers in barley: IV. The study of barley Polycomb group (PcG) genes during seed development and in response to external ABA. BMC Plant Biology 10:73 doi: 10.1186/1471-2229-10-73
CrossRef Google Scholar
|
[154]
|
Li S, Zhou B, Peng X, Kuang Q, Huang X, et al. 2014. OsFIE2 plays an essential role in the regulation of rice vegetative and reproductive development. New Phytologist 201:66−79 doi: 10.1111/nph.12472
CrossRef Google Scholar
|
[155]
|
Derkacheva M, Hennig L. 2013. Variations on a theme: Polycomb group proteins in plants. Journal of Experimental Botany 65:2769−84 doi: 10.1093/jxb/ert410
CrossRef Google Scholar
|
[156]
|
Hsieh TF, Shin J, Uzawa R, Silva P, Cohen S, et al. 2011. Regulation of imprinted gene expression in Arabidopsis endosperm. Proceedings of the National Academy of Sciences 108:1755−62 doi: 10.1073/pnas.1019273108
CrossRef Google Scholar
|
[157]
|
Figueiredo DD, Batista RA, Roszak PJ, Köhler C. 2015. Auxin production couples endosperm development to fertilization. Nature Plants 1:15184 doi: 10.1038/nplants.2015.184
CrossRef Google Scholar
|
[158]
|
Xu X, E Z, Zhang D, Yun Q, Zhou Y, et al. 2020. OsYUC11-mediated auxin biosynthesis is essential for endosperm development of rice. Plant Physiology 185:934−50 doi: 10.1093/plphys/kiaa057
CrossRef Google Scholar
|
[159]
|
Sun X, Ling S, Lu Z, Ouyang Y, Liu S, Yao J. 2014. OsNF-YB1, a rice endosperm-specific gene, is essential for cell proliferation in endosperm development. Gene 551:214−21 doi: 10.1016/j.gene.2014.08.059
CrossRef Google Scholar
|
[160]
|
Bernardi J, Lanubile A, Li Q-B, Kumar D, Kladnik A, et al. 2012. Impaired auxin biosynthesis in the defective endosperm18 mutant is due to mutational loss of expression in the ZmYuc1 gene encoding endosperm-specific YUCCA1 protein in maize. Plant Physiology 160:1318−28 doi: 10.1104/pp.112.204743
CrossRef Google Scholar
|
[161]
|
Luo M, Wu X, Xie L, Sun X, Wang N, et al. 2023. Polycomb Repressive Complex 2 (PRC2) suppresses asexual embryo and autonomous endosperm formation in rice. Research Square Preprint doi: 10.21203/rs.3.rs-1087314/v1
CrossRef Google Scholar
|
[162]
|
Xiong H, Wang W, Sun MX. 2021. Endosperm development is an autonomously programmed process independent of embryogenesis. The Plant Cell 33:1151−60 doi: 10.1093/plcell/koab007
CrossRef Google Scholar
|
[163]
|
Zhang T. 2021. Autonomous endosperm development in embryo-free seeds. The Plant Cell 33:1091−92 doi: 10.1093/plcell/koab009
CrossRef Google Scholar
|
[164]
|
Duan B, Zhou C, Zhu C, Yu Y, Li G, et al. 2019. Model-based understanding of single-cell CRISPR screening. Nature Communications 10:2233 doi: 10.1038/s41467-019-10216-x
CrossRef Google Scholar
|
[165]
|
Lo A, Qi L. 2017. Genetic and epigenetic control of gene expression by CRISPR-Cas systems. F1000Research 6:747 doi: 10.12688/f1000research.11113.1
CrossRef Google Scholar
|