[1]

Ghazoul J. 2016. Dipterocarp Biology, Ecology, and Conservation. 1st Edition. UK: Oxford University Press. https://doi.org/10.1093/acprof:oso/9780199639656.001.0001

[2]

Ashton PS. 1988. Dipterocarp biology as a window to the understanding of tropical forest structure. Annual Review of Ecology and Systematics 19:347−70

doi: 10.1146/annurev.es.19.110188.002023
[3]

Sodhi NS, Posa MRC, Lee TM, Bickford D, Koh LP, et al. 2010. The state and conservation of Southeast Asian biodiversity. Biodiversity and Conservation 19:317−28

doi: 10.1007/s10531-009-9607-5
[4]

Edwards DP, Tobias JA, Sheil D, Meijaard E, Laurance WF. 2014. Maintaining ecosystem function and services in logged tropical forests. Trends in Ecology and Evolution 29:511−20

doi: 10.1016/j.tree.2014.07.003
[5]

Hu YJ, Li YX. 1992. The Tropical of Rain Forest of Hainan Island. 1st Edition. Guangdong, China: Guangdong Higher Education Press

[6]

Hu YJ. 1983. The phytocoenological features and types of Dipterocap forest in Hainan island. Ecological Science 2:16−24

[7]

Xu H, Li YD, Luo SS, Chen DX, Lin MX. 2007. Review of Vatica mangachapoi, a national key protected plant on Hainan Island. Tropical Forestry 35:8−11

[8]

Liang SQ, Lin Y, Yang XB, Huang SM, Fu SX, et al. 1993. The Vatica hainanensis Forest of Li Ji, Wan Ning County, Hainan Island. Natural Science Journal of Hainan University 11:1−9

[9]

Yang XB, Hu RG. 2000. The floral components and soil properties of forest on the tropical sandy beach. Chinese Journal of Ecology 19:6−11

[10]

Hu RG, Liang SQ, Lin Y. 1995. A study on the soil properties of Vatica mangachapoi forest in Li Ji, Wan Ning County, Hainan Province. Natural Science Journal of Hainan University 13:203−10

[11]

Wu YH, Huang QM, Liang SQ, Lin Y. 1996. Disease and pest control of Vatica mangachapoi forest in Liji Town, Wanning City, Hainan Province. Tropical Forestry 24:47−51

[12]

Wang G, Zhao JM, Hao QY. 2012. Landscape fragmentation of coastal Vatica mangachapoi forest nature reserve in Shimei bay. Guangdong Agricultural Sciences 39:171−4

[13]

Kwak MM, Velterop O, Van Andel J. 1998. Pollen and gene flow in fragmented habitats. Applied Vegetation Science 1:37−54

doi: 10.2307/1479084
[14]

Kolb A, Diekmann M. 2005. Effects of life-history traits on responses of plant species to forest fragmentation. Conservation Biology 19:929−38

doi: 10.1111/j.1523-1739.2005.00065.x
[15]

Lowe AJ, Boshier D, Ward M, Bacles CFE, Navarro C. 2005. Genetic resource impacts of habitat loss and degradation; reconciling empirical evidence and predicted theory for neotropical trees. Heredity 95:255−73

doi: 10.1038/sj.hdy.6800725
[16]

Ward M, Dick CW, Gribel R, Lowe AJ. 2005. To self, or not to self.. A review of outcrossing and pollen-mediated gene flow in neotropical trees. Heredity 95:246−54

doi: 10.1038/sj.hdy.6800712
[17]

Vekemans X, Hardy OJ. 2004. New insights from fine-scale spatial genetic structure analyses in plant populations. Molecular Ecology 13:921−35

doi: 10.1046/j.1365-294X.2004.02076.x
[18]

Sebbenn AM, Carvalho ACM, Freitas MLM, Moraes SMB, Gaino APSC, et al. 2011. Low levels of realized seed and pollen gene flow and strong spatial genetic structure in a small, isolated and fragmented population of the tropical tree Copaifera langsdorffii Desf. Heredity 106:134−45

doi: 10.1038/hdy.2010.33
[19]

Suzuki E, Ashton PS. 1996. Sepal and nut size ratio of fruits of Asian Dipterocarpaceae and its implications for dispersal. Journal of Tropical Ecology 12:853−70

doi: 10.1017/S0266467400010129
[20]

Smith JR, Bagchi R, Ellens J, Kettle CJ, Burslem DFRP, et al. 2015. Predicting dispersal of auto-gyrating fruit in tropical trees: a case study from the Dipterocarpaceae. Ecology and Evolution 5(9):1794−801

doi: 10.1002/ece3.1469
[21]

Momose K, Yumoto T, Nagamitsu T, Kato M, Nagamasu H, et al. 1998. Pollination biology in a lowland dipterocarp forest in Sarawak, Malaysia. I. Characteristics of the plant-pollinator community in a lowland dipterocarp forest. American Journal of Botany 10:1477−501

doi: 10.2307/2446404
[22]

Lee SL, Ng KKS, Ng CH, Tnah LH, Lee CT, et al. 2016. Spatial studies of Shorea parvifolia ssp parvifolia (Dipterocarpaceae) in a lowland and hill dipterocarp forest. Journal of Tropical Forest Science 28:309−17

[23]

Kettle CJ, Maycock CR, Ghazoul J, Hollingsworth PM, Khoo E, et al. 2011. Ecological implications of a flower size/number trade-off in tropical forest trees. PLoS One 6:e16111

doi: 10.1371/journal.pone.0016111
[24]

Harata T, Nanami S, Yamakura T, Matsuyama S, Chong L, et al. 2012. Fine-scale spatial genetic structure of ten Dipterocarp tree species in a Bornean rain forest. Biotropica 44:586−94

doi: 10.1111/j.1744-7429.2011.00836.x
[25]

Finger A, Kettle CJ, Kaiser-Bunbury CN, Valentin T, Mougal J, et al. 2012. Forest fragmentation genetics in a formerly widespread island endemic tree: Vateriopsis seychellarum (Dipterocarpaceae). Molecular Ecology 21:2369−82

doi: 10.1111/j.1365-294X.2012.05543.x
[26]

Widiyatno, Indrioko S, Na’iem M, Purnomo S, Hosaka T, et al. 2017. Effects of logging rotation in a lowland dipterocarp forest on mating system and gene flow in Shorea parvifolia. Tree Genetics and Genomes 13:85

doi: 10.1007/s11295-017-1167-3
[27]

Doyle JJ. 1990. Isolation of Plant DNA from Fresh Tissue. Focus 12:13−15

[28]

Guo JJ, Shang SB, Wang CS, Zhao ZG, Zeng J. 2017. Twenty microsatellite markers for the endangered Vatica mangachapoi (Dipterocarpaceae). Applications in Plant Sciences 5:1600134

doi: 10.3732/apps.1600134
[29]

Peakall R, Smouse PE. 2006. GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes, 6:288−95

doi: 10.1111/j.1471-8286.2005.01155.x
[30]

Nei M, Chesser RK. 1983. Estimation of fixation indices and gene diversities. Annals of Human Genetics 47:253−59

doi: 10.1111/j.1469-1809.1983.tb00993.x
[31]

Liu K, Muse SV. 2005. PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21:2128−29

doi: 10.1093/bioinformatics/bti282
[32]

Excoffier L, Lischer HEL. 2010. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources 10:564−7

doi: 10.1111/j.1755-0998.2010.02847.x
[33]

Piry S, Luikart G, Cornuet JM. 1999. BOTTLENECK: a computer program for detecting recent reductions in the effective size using allele frequency data. Journal of Heredity 90:502−3

doi: 10.1093/jhered/90.4.502
[34]

Falush D, Stephens M, Pritchard JK. 2003. Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567−87

doi: 10.1093/genetics/164.4.1567
[35]

Earl DA, VonHoldt BM. 2012. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources 4:359−61

doi: 10.1007/s12686-011-9548-7
[36]

Jakobsson M, Rosenberg NA. 2007. CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801−6

doi: 10.1093/bioinformatics/btm233
[37]

Rosenberg NA. 2004. DISTRUCT: a program for the graphical display of population structure. Molecular Ecology Notes 4:137−38

doi: 10.1046/j.1471-8286.2003.00566.x
[38]

Tamura K, Stecher G, Kumar S. 2021. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Molecular Biology and Evolution 38:3022−27

doi: 10.1093/molbev/msab120
[39]

Beerli P. 2006. Comparison of Bayesian and maximum-likelihood inference of population genetic parameters. Bioinformatics 22:341−5

doi: 10.1093/bioinformatics/bti803
[40]

Hardy OJ, Vekemans X. 2002. SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Molecular Ecology Notes 2:618−20

doi: 10.1046/j.1471-8286.2002.00305.x
[41]

Loiselle BA, Sork VL, Nason J, Graham C. 1995. Spatial genetic structure of a tropical understory shrub, Psychotria officinalis (Rubiaceae). American Journal of Botany 82:1420−25

doi: 10.1002/j.1537-2197.1995.tb12679.x
[42]

Doligez A, Joly HI. 1997. Genetic diversity and spatial structure within a natural stand of a tropical forest tree species, Carapa procera (Meliaceae), in French Guiana. Heredity 79:72−82

doi: 10.1038/hdy.1997.124
[43]

Cavers S, Degen B, Caron H, Lemes MR, Margis R, et al. 2005. Optimal sampling strategy for estimation of spatial genetic structure in tree populations. Heredity 95:281−89

doi: 10.1038/sj.hdy.6800709
[44]

Chen W, Qi H, Fu R, Li D, Jiang D. 2021. Survey and population dynamics analysis of Vatica mangachapoi germplasm resource in Hainan Island. Molecular Plant Breeding 14:4846−54

[45]

Hamrick JL, Godt MJW, Sherman-Broyles SL. 1992. Factors influencing levels of genetic diversity in woody plant species. New Forest 6:95−124

doi: 10.1007/BF00120641
[46]

Ony MA, Nowicki M, Boggess SL, Klingeman WE, Zobel JM, et al. 2020. Habitat fragmentation influences genetic diversity and differentiation: Fine-scale population structure of Cercis canadensis (eastern redbud). Ecology and Evolution 10:3655−70

doi: 10.1002/ece3.6141
[47]

Bacles CFE, Burczyk J, Lowe AJ, Ennos RA. 2005. Historical and contemporary mating patterns in remnant populations of the forest tree Fraxinus excelsior L. Evolution 59:979−90

doi: 10.1111/j.0014-3820.2005.tb01037.x
[48]

Kikuchi S, Shibata M, Tanaka H. 2015. Effects of forest fragmentation on the mating system of a cool-temperate heterodichogamous tree Acer mono. Global Ecology and Conservation 3:789−801

doi: 10.1016/j.gecco.2015.04.005
[49]

Tito de Morais C, Ghazoul J, Maycock CR, Bagchi R, Burslem DFRP, et al. 2015. Understanding local patterns of genetic diversity in dipterocarps using a multi-site, multi-species approach: Implications for forest management and restoration. Forest Ecology and Management 356:153−65

doi: 10.1016/j.foreco.2015.07.023
[50]

Smith JR, Ghazoul J, Burslem DFRP, Itoh A, Khoo E, et al. 2018. Are patterns of fine-scale spatial genetic structure consistent between sites within tropical tree species? PLoS One 13(3):e0193501

doi: 10.1371/journal.pone.0193501
[51]

Lü B, Wang N, Liu S, Hao Q. 2015. Reproductive phenological characteristics of hainan coastal Vatica mangachapoi forest. Acta Ecologica Sinica 35:416−23

doi: 10.5846/stxb201304010572
[52]

Tackenberg O. 2003. Modeling long-distance dispersal of plant diaspores by wind. Ecological Monographs 73:173−89

doi: 10.1890/0012-9615(2003)073[0173:MLDOPD]2.0.CO;2
[53]

Maurer KD, Bohrer G, Medvigy D, Wright SJ. 2013. The timing of abscission affects dispersal distance in a wind-dispersed tropical tree. Functional Ecology 27:208−18

doi: 10.1111/1365-2435.12028
[54]

Kettle CJ, Hollingsworth PM, Burslem DFRP, Maycock CR, Khoo E, et al. 2011. Determinants of fine-scale spatial genetic structure in three co-occurring rain forest canopy trees in Borneo. Perspectives in Plant Ecology, Evolution and Systematics 13:47−56

doi: 10.1016/j.ppees.2010.11.002
[55]

Wang B. 1987. Approach to the horizontal zonation of monsoon forests. Acta Phytoecologica et Geobotanica Sinica 11:154−58

[56]

Liang S, Lin Y, Yang X, Huang S, Fu S, et al. 1994. The Vatica mangachapoi Forest of Li Ji, Wan Ning County, Hainan Island. Natural Science Journal of Hainan University 12:14−19