[1]

Piomelli D, Volterra A, Dale N, Siegelbaum SA, Kandel ER, et al. 1987. Lipoxygenase metabolites of arachidonic acid as second messengers for presynaptic inhibition of Aplysia sensory cells. Nature 328:38−43

doi: 10.1038/328038a0
[2]

Fernández Peralbo MA, Priego-Capote F, Galache-Osuna JG, Luque de Castro MD. 2013. Targeted analysis of omega-6-derived eicosanoids in human serum by SPE-LC-MS/MS for evaluation of coronary artery disease. Electrophoresis 34:2901−9

doi: 10.1002/elps.201200603
[3]

Francés DE, Motiño O, Agrá N, González-Rodríguez Á, González-Rodríguez Á, et al. 2015. Hepatic cyclooxygenase-2 expression protects against diet-induced steatosis, obesity, and insulin resistance. Diabetes 64:1522−31

doi: 10.2337/db14-0979
[4]

Martínez-Clemente, M, Ferré N, Titos E, Horrillo R, González-Périz A, et al. 2010. Disruption of the 12/15-lipoxygenase gene (Alox15) protects hyperlipidemic mice from nonalcoholic fatty liver disease. Hepatology 52:1980−91

doi: 10.1002/hep.23928
[5]

Yang WS, Sriramaratnam R, Welsch ME, Shimada K, Skouta R, et al. 2014. Regulation of ferroptotic cancer cell death by GPX4. Cell 156:317−31

doi: 10.1016/j.cell.2013.12.010
[6]

Tang D, Chen X, Kang R, Kroemer G. 2021. Ferroptosis: Molecular mechanisms and health implications. Cell Research 31:107−25

doi: 10.1038/s41422-020-00441-1
[7]

Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, et al. 2012. Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell 149:1060−72

doi: 10.1016/j.cell.2012.03.042
[8]

Jiang X, Stockwell BR, Conrad M. 2021. Ferroptosis: Mechanisms, biology and role in disease. Nature Reviews Molecular Cell Biology 22:266−82

doi: 10.1038/s41580-020-00324-8
[9]

Zhou B, Liu J, Kang R, Klionsky DJ, Kroemer G, et al. 2020. Ferroptosis is a type of autophagy-dependent cell death. Seminars in Cancer Biology 66:89−100

doi: 10.1016/j.semcancer.2019.03.002
[10]

Qin X, Zhang J, Wang B, Xu G, Yang X, et al. 2021. Ferritinophagy is involved in the zinc oxide nanoparticles-induced ferroptosis of vascular endothelial cells. Autophagy 17:4266−85

doi: 10.1080/15548627.2021.1911016
[11]

Kagan VE, Mao G, Qu F, Angeli JPF, Doll S, et al. 2017. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nature Chemical Biology 13:81−90

doi: 10.1038/nchembio.2238
[12]

Hou W, Xie Y, Song X, Sun X, Lotze MT, et al. 2016. Autophagy promotes ferroptosis by degradation of ferritin. Autophagy 12:1425−28

doi: 10.1080/15548627.2016.1187366
[13]

Wu Z, Geng Y, Lu X, Shi Y, Wu G, et al. 2019. Chaperone-mediated autophagy is involved in the execution of ferroptosis. Proceedings of the National Academy of Sciences of the United States of America 116:2996−3005

doi: 10.1073/pnas.1819728116
[14]

Bai Y, Meng L, Han L, Jia Y, Zhao Y, et al. 2019. Lipid storage and lipophagy regulates ferroptosis. Biochemical and Biophysical Research Communications 508:997−1003

doi: 10.1016/j.bbrc.2018.12.039
[15]

Dixon SJ, Patel DN, Welsch M, Skouta R, Lee ED, et al. 2014. Pharmacological inhibition of cystine-glutamate exchange induces endoplasmic reticulum stress and ferroptosis. eLife 3:e02523

doi: 10.7554/eLife.02523
[16]

Chen Y, Mi Y, Zhang X, Ma Q, Song Y, et al. 2019. Dihydroartemisinin-induced unfolded protein response feedback attenuates ferroptosis via PERK/ATF4/HSPA5 pathway in glioma cells. Journal of Experimental and Clinical Cancer Research 38:402

doi: 10.1186/s13046-019-1413-7
[17]

Chen D, Fan Z, Rauh M, Buchfelder M, Eyupoglu IY, et al. 2017. ATF4 promotes angiogenesis and neuronal cell death and confers ferroptosis in a xCT-dependent manner. Oncogene 36:5593−608

doi: 10.1038/onc.2017.146
[18]

Yan Q, Zhang W, Lin M, Teymournejad O, Budachetri K, et al. 2021. Iron robbery by intracellular pathogen via bacterial effector-induced ferritinophagy. PNAS 118:e2026598118

doi: 10.1073/pnas.2026598118
[19]

Feng H, Schorpp K, Jin J, Yozwiak CE, Hoffstrom BG, et al. 2020. Transferrin receptor is a specific ferroptosis marker. Cell Reports 30:3411−3423.E7

doi: 10.1016/j.celrep.2020.02.049
[20]

Bochkov VN, Oskolkova OV, Birukov KG, Levonen AL, Binder CJ, et al. 2010. Generation and biological activities of oxidized phospholipids. Antioxidants & Redox Signaling 12:1009−59

doi: 10.1089/ars.2009.2597
[21]

Dixon SJ, Stockwell BR. 2014. The role of iron and reactive oxygen species in cell death. Nature Chemical Biology 10:9−17

doi: 10.1038/nchembio.1416
[22]

Weber RA, Yen FS, Nicholson SPV, Alwaseem H, Bayraktar EC, et al. 2020. Maintaining iron homeostasis is the key role of lysosomal acidity for cell proliferation. Molecular Cell 77:645−655.E7

doi: 10.1016/j.molcel.2020.01.003
[23]

Puri P, Baillie RA, Wiest MM, Mirshahi F, Choudhury J, et al. 2007. A lipidomic analysis of nonalcoholic fatty liver disease. Hepatology 46:1081−90

doi: 10.1002/hep.21763
[24]

Wang D, Wei Y, Pagliassotti MJ. 2006. Saturated fatty acids promote endoplasmic reticulum stress and liver injury in rats with hepatic steatosis. Endocrinology 147:943−51

doi: 10.1210/en.2005-0570
[25]

Chang TK, Lawrence DA, Lu M, Tan J, Harnoss JM, et al. 2018. Coordination between two branches of the unfolded protein response determines apoptotic cell fate. Molecular Cell 71:629−636.E5

doi: 10.1016/j.molcel.2018.06.038
[26]

Simopoulos AP. 2008. The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Experimental Biology and Medicine 233:674−88

doi: 10.3181/0711-MR-311
[27]

Calder PC. 2011. Fatty acids and inflammation: The cutting edge between food and pharma. European Journal of Pharmacology 668:S50−S58

doi: 10.1016/j.ejphar.2011.05.085
[28]

Ricciotti E, Fitzgerald GA. 2011. Prostaglandins and inflammation. Arteriosclerosis, Thrombosis, and Vascular Biology 31:986−1000

doi: 10.1161/ATVBAHA.110.207449
[29]

Poulsen RC, Gotlinger KH, Serhan CN, Kruger MC. 2008. Identification of inflammatory and proresolving lipid mediators in bone marrow and their lipidomic profiles with ovariectomy and omega-3 intake. American Journal of Hematology 83:437−45

doi: 10.1002/ajh.21170
[30]

Park E, Chung SW. 2019. ROS-mediated autophagy increases intracellular iron levels and ferroptosis by ferritin and transferrin receptor regulation. Cell Death & Disease 10:822

doi: 10.1038/s41419-019-2064-5
[31]

Ren B, Liu H, Gao H, Liu S, Zhang Z, et al. 2017. Celastrol induces apoptosis in hepatocellular carcinoma cells via targeting ER-stress/UPR. Oncotarget 8:93039−50

doi: 10.18632/oncotarget.21750
[32]

Ye P, Mimura J, Okada T, Sato H, Liu T, et al. 2014. Nrf2- and ATF4-dependent upregulation of xCT modulates the sensitivity of t24 bladder carcinoma cells to proteasome inhibition. Molecular and Cellular Biology 34:3421−34

doi: 10.1128/MCB.00221-14
[33]

Xu M, Tao J, Yang Y, Tan S, Liu H, et al. 2020. Ferroptosis involves in intestinal epithelial cell death in ulcerative colitis. Cell Death & Disease 11:86

doi: 10.1038/s41419-020-2299-1
[34]

Kwon MY, Park E, Lee SJ, Chung SW. 2015. Heme oxygenase-1 accelerates erastin-induced ferroptotic cell death. Oncotarget 6:24393−403

doi: 10.18632/oncotarget.5162
[35]

Park EJ, Park YJ, Lee S, Lee K, Yoon C. 2019. Whole cigarette smoke condensates induce ferroptosis in human bronchial epithelial cells. Toxicology Letters 303:55−66

doi: 10.1016/j.toxlet.2018.12.007
[36]

Lee YS, Lee DH, Choudry HA, Bartlett DL, Lee YJ. 2018. Ferroptosis-induced endoplasmic reticulum stress: Cross-talk between ferroptosis and apoptosis. Molecular Cancer Research 16:1073−76

doi: 10.1158/1541-7786.MCR-18-0055
[37]

Lin CH, Tseng HF, Hsieh PC, Chiu V, Lin T, et al. 2021. Nephroprotective role of chrysophanol in hypoxia/reoxygenation-induced renal cell damage via apoptosis, er stress, and ferroptosis. Biomedicines 9:1283

doi: 10.3390/biomedicines9091283