[1]

Conant GC, Wolfe KH. 2008. Turning a hobby into a job: how duplicated genes find new functions. Nature Reviews Genetics 9:938−50

doi: 10.1038/nrg2482
[2]

Innan H, Kondrashov F. 2010. The evolution of gene duplications: classifying and distinguishing between models. Nature Reviews Genetics 11:97−108

doi: 10.1038/nrg2689
[3]

Kaessmann H. 2010. Origins, evolution, and phenotypic impact of new genes. Genome Research 20:1313−26

doi: 10.1101/gr.101386.109
[4]

Zhang J. 2003. Evolution by gene duplication: an update. Trends in Ecology & Evolution 18:292−98

doi: 10.1016/s0169-5347(03)00033-8
[5]

Bailey JA, Gu Z, Clark RA, Reinert K, Samonte RV, et al. 2002. Recent segmental duplications in the human genome. Science 297:1003−7

doi: 10.1126/science.1072047
[6]

Marques-Bonet T, Kidd JM, Ventura M, Graves TA, Cheng Z, et al. 2009. A burst of segmental duplications in the genome of the African great ape ancestor. Nature 457:877−81

doi: 10.1038/nature07744
[7]

Panchy N, Lehti-Shiu M, Shiu SH. 2016. Evolution of gene duplication in plants. Plant Physiology 171:2294−316

doi: 10.1104/pp.16.00523
[8]

Liu C, Wu Y, Liu Y, Yang L, Dong R, et al. 2021. Genome-wide analysis of tandem duplicated genes and their contribution to stress resistance in pigeonpea (Cajanus cajan). Genomics 113:728−35

doi: 10.1016/j.ygeno.2020.10.003
[9]

Hu Y, Wu X, Jin G, Peng J, Leng R, et al. 2021. Rapid genome evolution and adaptation of Thlaspi arvense mediated by recurrent RNA-based and tandem gene duplications. Frontiers in Plant Science 12:772655

doi: 10.3389/fpls.2021.772655
[10]

Qiao X, Li Q, Yin H, Qi K, Li L, et al. 2019. Gene duplication and evolution in recurring polyploidization–diploidization cycles in plants. Genome Biology 20:38

doi: 10.1186/s13059-019-1650-2
[11]

Hanada K, Zou C, Lehti-Shiu MD, Shinozaki K, Shiu SH. 2008. Importance of lineage-specific expansion of plant tandem duplicates in the adaptive response to environmental stimuli. Plant Physiology 148:993−1003

doi: 10.1104/pp.108.122457
[12]

Salojärvi J, Smolander OP, Nieminen K, Rajaraman S, Safronov O, et al. 2017. Genome sequencing and population genomic analyses provide insights into the adaptive landscape of silver birch. Nature Genetics 49:904−12

doi: 10.1038/ng.3862
[13]

Zhang A, Xiong Y, Fang J, Jiang X, Wang T, et al. 2022. Diversity and functional evolution of terpene synthases in Rosaceae. Plants 11:736

doi: 10.3390/plants11060736
[14]

Choulet F, Alberti A, Theil S, Glover N, Barbe V, et al. 2014. Structural and functional partitioning of bread wheat chromosome 3B. Science 345:1249721

doi: 10.1126/science.1249721
[15]

Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, et al. 2009. The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112−15

doi: 10.1126/science.1178534
[16]

Zhao G, Zou C, Li K, Wang K, Li T, et al. 2017. The Aegilops tauschii genome reveals multiple impacts of transposons. Nature Plants 3:946−55

doi: 10.1038/s41477-017-0067-8
[17]

Casola C, Betrán E. 2017. The genomic impact of gene retrocopies: what have we learned from comparative genomics, population genomics, and transcriptomic analyses? Genome Biology and Evolution 9:1351−73

doi: 10.1093/gbe/evx081
[18]

Hirsch CD, Springer NM. 2017. Transposable element influences on gene expression in plants. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms 1860:157−65

doi: 10.1016/j.bbagrm.2016.05.010
[19]

Bennetzen JL. 2007. Patterns in grass genome evolution. Current Opinion in Plant Biology 10:176−81

doi: 10.1016/j.pbi.2007.01.010
[20]

Elert E. 2014. Rice by the numbers: a good grain. Nature 514:S50−S51

doi: 10.1038/514S50a
[21]

Wang W, Zheng H, Fan C, Li J, Shi J, et al. 2006. High rate of chimeric gene origination by retroposition in plant genomes. The Plant Cell 18:1791−802

doi: 10.1105/tpc.106.041905
[22]

Zhu Z, Tan S, Zhang Y, Zhang Y. 2016. LINE-1-like retrotransposons contribute to RNA-based gene duplication in dicots. Scientific Reports 6:24755

doi: 10.1038/srep24755
[23]

Kaessmann H, Vinckenbosch N, Long M. 2009. RNA-based gene duplication: mechanistic and evolutionary insights. Nature Reviews Genetics 10:19−31

doi: 10.1038/nrg2487
[24]

Stritt C, Wyler M, Gimmi EL, Pippel M, Roulin AC. 2020. Diversity, dynamics and effects of long terminal repeat retrotransposons in the model grass Brachypodium distachyon. New Phytologist 227:1736−48

doi: 10.1111/nph.16308
[25]

Vitte C. 2003. Formation of solo-LTRs through unequal homologous recombination counterbalances amplifications of LTR retrotransposons in rice Oryza sativa L. Molecular Biology and Evolution 20:528−40

doi: 10.1093/molbev/msg055
[26]

Jones JDG, Dangl JL. 2006. The plant immune system. Nature 444:323−29

doi: 10.1038/nature05286
[27]

Jiang C, Wang D, Zhang J, Xu Y, Zhang C, et al. 2021. VqMYB154 promotes polygene expression and enhances resistance to pathogens in Chinese wild grapevine. Horticulture Research 8:151

doi: 10.1038/s41438-021-00585-0
[28]

Mine A, Seyfferth C, Kracher B, Berens ML, Becker D, et al. 2018. The defense phytohormone signaling network enables rapid, high-amplitude transcriptional reprogramming during effector-triggered immunity. The Plant Cell 30:1199−219

doi: 10.1105/tpc.17.00970
[29]

Qu J, Dry I, Liu L, Guo Z, Yin L. 2021. Transcriptional profiling reveals multiple defense responses in downy mildew-resistant transgenic grapevine expressing a TIR-NBS-LRR gene located at the MrRUN1/MrRPV1 locus. Horticulture Research 8:161

doi: 10.1038/s41438-021-00597-w
[30]

Wan R, Guo C, Hou X, Zhu Y, Gao M, et al. 2021. Comparative transcriptomic analysis highlights contrasting levels of resistance of Vitis vinifera and Vitis amurensis to Botrytis cinerea. Horticulture Research 8:103

doi: 10.1038/s41438-021-00537-8
[31]

Kim S, Park J, Yeom SI, Kim YM, Seo E, et al. 2017. New reference genome sequences of hot pepper reveal the massive evolution of plant disease-resistance genes by retroduplication. Genome Biology 18:210

doi: 10.1186/s13059-017-1341-9
[32]

Li K, Jiang W, Hui Y, Kong M, Feng L, et al. 2021. Gapless indica rice genome reveals synergistic contributions of active transposable elements and segmental duplications to rice genome evolution. Molecular Plant 14:1745−56

doi: 10.1016/j.molp.2021.06.017
[33]

Jaillon O, Aury JM, Noel B, Policriti A, Clepet C, et al. 2007. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463−67

doi: 10.1038/nature06148
[34]

Wang Y, Xin H, Fan P, Zhang J, Liu Y, et al. 2021. The genome of Shanputao (Vitis amurensis) provides a new insight into cold tolerance of grapevine. The Plant Journal 105:1495−506

doi: 10.1111/tpj.15127
[35]

Cheng J, Wang X, Liu X, Zhu X, Li Z, et al. 2021. Chromosome-level genome of Himalayan yew provides insights into the origin and evolution of the paclitaxel biosynthetic pathway. Molecular Plant 14:1199−209

doi: 10.1016/j.molp.2021.04.015
[36]

Lorrain B, Ky I, Pechamat L, Teissedre PL. 2013. Evolution of analysis of polyhenols from grapes, wines, and extracts. Molecules 18:1076−100

doi: 10.3390/molecules18011076
[37]

Matarese F, Cuzzola A, Scalabrelli G, D'Onofrio C. 2014. Expression of terpene synthase genes associated with the formation of volatiles in different organs of Vitis vinifera. Phytochemistry 105:12−24

doi: 10.1016/j.phytochem.2014.06.007
[38]

Šikuten I, Štambuk P, Andabaka Ž, Tomaz I, Marković Z, et al. 2020. Grapevine as a rich source of polyphenolic compounds. Molecules 25:5604

doi: 10.3390/molecules25235604
[39]

Hansen SC, Stolter C, Imholt C, Jacob J. 2016. Plant secondary metabolites as rodent repellents: a systematic review. Journal of Chemical Ecology 42:970−83

doi: 10.1007/s10886-016-0760-5
[40]

Piasecka A, Jedrzejczak-Rey N, Bednarek P. 2015. Secondary metabolites in plant innate immunity: conserved function of divergent chemicals. New Phytologist 206:948−64

doi: 10.1111/nph.13325
[41]

Pang Z, Chen J, Wang T, Gao C, Li Z, et al. 2021. Linking plant secondary metabolites and plant microbiomes: a review. Frontiers in Plant Science 12:621276

doi: 10.3389/fpls.2021.621276
[42]

Block AK, Vaughan MM, Schmelz EA, Christensen SA. 2019. Biosynthesis and function of terpenoid defense compounds in maize (Zea mays). Planta 249:21−30

doi: 10.1007/s00425-018-2999-2
[43]

Fabisch T, Gershenzon J, Unsicker SB. 2019. Specificity of herbivore defense responses in a woody plant, black poplar (Populus nigra). Journal of Chemical Ecology 45:162−77

doi: 10.1007/s10886-019-01050-y
[44]

Mahatma MK, Thawait LK, Jadon KS, Thirumalaisamy PP, Bishi SK, et al. 2021. Metabolic profiling for dissection of late leaf spot disease resistance mechanism in groundnut. Physiology and Molecular Biology of Plants 27:1027−41

doi: 10.1007/s12298-021-00985-5
[45]

Veremeichik GN, Grigorchuk VP, Butovets ES, Lukyanchuk LM, Brodovskaya EV, et al. 2021. Isoflavonoid biosynthesis in cultivated and wild soybeans grown in the field under adverse climate conditions. Food Chemistry 342:128292

doi: 10.1016/j.foodchem.2020.128292
[46]

Yang X, Gu X, Ding J, Yao L, Gao X, et al. 2022. Gene expression analysis of resistant and susceptible rice cultivars to sheath blight after inoculation with Rhizoctonia solani. BMC Genomics 23:278

doi: 10.1186/s12864-022-08524-6
[47]

Yin W, Wang X, Liu H, Wang Y, Nocker S, et al. 2022. Overexpression of VqWRKY31 enhances powdery mildew resistance in grapevine by promoting salicylic acid signaling and specific metabolite synthesis. Horticulture Research 9:uhab064

doi: 10.1093/hr/uhab064
[48]

Bauters L, Stojilković B, Gheysen G. 2021. Pathogens pulling the strings: Effectors manipulating salicylic acid and phenylpropanoid biosynthesis in plants. Molecular Plant Pathology 22:1436−48

doi: 10.1111/mpp.13123
[49]

Vogt T. 2010. Phenylpropanoid biosynthesis. Molecular Plant 3:2−20

doi: 10.1093/mp/ssp106
[50]

Yadav V, Wang Z, Wei C, Amo A, Ahmed B, et al. 2020. Phenylpropanoid pathway engineering: an emerging approach towards plant defense. Pathogens 9:312

doi: 10.3390/pathogens9040312
[51]

He J, Liu Y, Yuan D, Duan M, Liu Y, et al. 2020. An R2R3 MYB transcription factor confers brown planthopper resistance by regulating the phenylalanine ammonia-lyase pathway in rice. Proceedings of the National Academy of Sciences of the United States of America 117:271−77

doi: 10.1073/pnas.1902771116
[52]

Huang J, Gu M, Lai Z, Fan B, Shi K, et al. 2010. Functional analysis of the Arabidopsis PAL gene family in plant growth, development, and response to environmental stress. Plant Physiology 153:1526−38

doi: 10.1104/pp.110.157370
[53]

Morant M, Jørgensen K, Schaller H, Pinot F, Møller BL, et al. 2007. CYP703 is an ancient cytochrome P450 in land plants catalyzing in-chain hydroxylation of lauric acid to provide building blocks for sporopollenin synthesis in pollen. The Plant Cell 19:1473−87

doi: 10.1105/tpc.106.045948
[54]

Tanaka Y. 2006. Flower colour and cytochromes P450. Phytochemistry Reviews 5:283−91

doi: 10.1007/s11101-006-9003-7
[55]

Petrussa E, Braidot E, Zancani M, Peresson C, Bertolini A, et al. 2013. Plant flavonoids—biosynthesis, transport and involvement in stress responses. International Journal of Molecular Sciences 14:14950−73

doi: 10.3390/ijms140714950
[56]

Król P, Igielski R, Pollmann S, Kępczyńska E. 2015. Priming of seeds with methyl jasmonate induced resistance to hemi-biotroph Fusarium oxysporum f.sp. lycopersici in tomato via 12-oxo-phytodienoic acid, salicylic acid, and flavonol accumulation. Journal of Plant Physiology 179:122−32

doi: 10.1016/j.jplph.2015.01.018
[57]

Lu Y, Chen Q, Bu Y, Luo R, Hao S, et al. 2017. Flavonoid accumulation plays an important role in the rust resistance of Malus plant leaves. Frontiers in Plant Science 8:1286

doi: 10.3389/fpls.2017.01286
[58]

Zuk M, Działo M, Richter D, Dymińska L, Matuła J, et al. 2016. halcone synthase (CHS) gene suppression in flax leads to changes in wall synthesis and sensing genes, cell wall chemistry and stem morphology parameters. Frontiers in Plant Science 7:894

doi: 10.3389/fpls.2016.00894
[59]

Wang Y, Tyler BM, Wang Y. 2019. Defense and counterdefense during plant-pathogenic oomycete infection. Annual Review of Microbiology 73:667−96

doi: 10.1146/annurev-micro-020518-120022
[60]

Dickman MB, Fluhr R. 2013. Centrality of host cell death in plant-microbe interactions. Annual Review of Phytopathology 51:543−70

doi: 10.1146/annurev-phyto-081211-173027
[61]

Hou K, Wu W, Gan S. 2013. SAUR36, a Small Auxin Up RNA gene, is involved in the promotion of leaf senescence in Arabidopsis. Plant Physiology 161:1002−09

doi: 10.1104/pp.112.212787
[62]

Feechan A, Anderson C, Torregrosa L, Jermakow A, Mestre P, et al. 2013. Genetic dissection of a TIR-NB-LRR locus from the wild North American grapevine species Muscadinia rotundifolia identifies paralogous genes conferring resistance to major fungal and oomycete pathogens in cultivated grapevine. The Plant Journal 76:661−74

doi: 10.1111/tpj.12327
[63]

Williams SJ, Yin L, Foley G, Casey LW, Outram MA, et al. 2016. Structure and function of the TIR domain from the grape NLR protein RPV1. Frontiers in Plant Science 7:1850

doi: 10.3389/fpls.2016.01850
[64]

Vannozzi A, Wong DCJ, Höll J, Hmmam I, Matus JT, et al. 2018. Combinatorial regulation of stilbene synthase genes by WRKY and MYB transcription factors in grapevine (Vitis vinifera L.). Plant and Cell Physiology 59:1043−59

doi: 10.1093/pcp/pcy045
[65]

Vannozzi A, Palumbo F, Magon G, Lucchin M, Barcaccia G. 2021. The grapevine (Vitis vinifera L.) floral transcriptome in Pinot noir variety:identification of tissue-related gene networks and whorl-specific markers in pre- and post-anthesis phases. Horticulture Research 8:200

doi: 10.1038/s41438-021-00635-7
[66]

Loehlin DW, Carroll SB. 2016. Expression of tandem gene duplicates is often greater than twofold. Proceedings of the National Academy of Sciences of the United States of America 113:5988−92

doi: 10.1073/pnas.1605886113
[67]

Kamoun S, Furzer O, Jones JDG, Judelson HS, Ali GS, et al. 2015. The Top 10 oomycete pathogens in molecular plant pathology. Molecular Plant Pathology 16:413−34

doi: 10.1111/mpp.12190
[68]

Lan X, Pritchard JK. 2016. Coregulation of tandem duplicate genes slows evolution of subfunctionalization in mammals. Science 352:1009−13

doi: 10.1126/science.aad8411
[69]

Conant GC, Birchler JA, Pires JC. 2014. Dosage, duplication, and diploidization: clarifying the interplay of multiple models for duplicate gene evolution over time. Current Opinion in Plant Biology 19:91−98

doi: 10.1016/j.pbi.2014.05.008
[70]

Li G, Jagadeeswaran G, Mort A, Sunkar R. 2017. ChIP-seq analysis for identifying genome-wide histone modifications associated with stress-responsive genes in plants. Methods in Molecular Biology 1631:139−49

doi: 10.1007/978-1-4939-7136-7_8
[71]

Feuerborn A, Cook PR. 2015. Why the activity of a gene depends on its neighbors. Trends in Genetics 31:483−90

doi: 10.1016/j.tig.2015.07.001
[72]

Rao SSP, Huntley MH, Durand NC, Stamenova EK, Bochkov ID, et al. 2014. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159:1665−80

doi: 10.1016/j.cell.2014.11.021
[73]

Qian W, Liao B, Chang AYF, Zhang J. 2010. Maintenance of duplicate genes and their functional redundancy by reduced expression. Trends in Genetics 26:425−30

doi: 10.1016/j.tig.2010.07.002
[74]

Stoltzfus A. 1999. On the possibility of constructive neutral evolution. Journal of Molecular Evolution 49:169−181

doi: 10.1007/PL00006540
[75]

Gout JF, Lynch M. 2015. Maintenance and loss of duplicated genes by dosage subfunctionalization. Molecular Biology and Evolution 32:2141−48

doi: 10.1093/molbev/msv095
[76]

Popadin KY, Gutierrez-Arcelus M, Lappalainen T, Buil A, Steinberg J, et al. 2014. Gene age predicts the strength of purifying selection acting on gene expression variation in humans. The American Journal of Human Genetics 95:660−74

doi: 10.1016/j.ajhg.2014.11.003
[77]

Kwon CT, Tang L, Wang X, Gentile I, Hendelman A, et al. 2022. Dynamic evolution of small signalling peptide compensation in plant stem cell control. Nature Plants 8:346−55

doi: 10.1038/s41477-022-01118-w
[78]

Schwope R, Magris G, Miculan M, Paparelli E, Celii M, et al. 2021. Open chromatin in grapevine marks candidate CREs and with other chromatin features correlates with gene expression. The Plant Journal 107:1631−47

doi: 10.1111/tpj.15404
[79]

Ellinghaus D, Kurtz S, Willhoeft U. 2008. LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons. BMC Bioinformatics 9:18

doi: 10.1186/1471-2105-9-18
[80]

Xu Z, Wang H. 2007. LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Research 35:W265−W268

doi: 10.1093/nar/gkm286
[81]

Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32:1792−97

doi: 10.1093/nar/gkh340