[1]

Ng TB, Lam SK, Cheung RCF, Wong JH, Wang H, et al. 2011. Antifungal protein from passion fruit (Passiflora edulis) seeds. In Nuts and Seeds in Health and Disease Prevention. Amsterdam: Elsevier. pp. 865–71. https://doi.org/10.1016/b978-0-12-375688-6.10102-1

[2]

Zhang X, Wei X, Ali MM, Rizwan HM, Li B, et al. 2021. Changes in the content of organic acids and expression analysis of citric acid accumulation-related genes during fruit development of yellow (Passiflora edulis f. flavicarpa) and purple (Passiflora edulis f. edulis) passion fruits. International Journal of Molecular Sciences 22:5765

doi: 10.3390/ijms22115765
[3]

Shi M, Ali MM, He Y, Ma S, Rizwan HM, et al. 2021. Flavonoids accumulation in fruit peel and expression profiling of related genes in purple (Passiflora edulis f. edulis) and yellow (Passiflora edulis f. flavicarpa) passion fruits. Plants 10:2240

doi: 10.3390/plants10112240
[4]

Rodriguez-Amaya DB. 2003. Passion fruits. In Encyclopedia of Food Sciences and Nutrition. Amsterdam: Elsevier. pp. 4368–73. https://doi.org/10.1016/B0-12-227055-X/00885-3

[5]

Maniwara P, Nakano K, Boonyakiat D, Ohashi S, Hiroi M, et al. 2014. The use of visible and near infrared spectroscopy for evaluating passion fruit postharvest quality. Journal of Food Engineering 143:33−43

doi: 10.1016/j.jfoodeng.2014.06.028
[6]

Huo D, Jiang L, Ma L, Hou C, Yang P. 2012. Function of Passiflora and its comprehensive processing utility. Science and Technology of Food Industry 33:391−95

doi: 10.13386/j.issn1002-0306.2012.19.075
[7]

Liang D, Ali MM, Yousef AF, He Y, Huang X, et al. 2021. Root colonization of Piriformospora indica improves phyto-nutritional composition of leaves, stems, tendrils and fruits of Passiflora edulis f. edulis. Advances in Food Sciences 43:142−49

[8]

Sousa DF, Veras VS, Freire VECS, Paula ML, Serra MAAO, et al. 2020. Effectiveness of passion fruit peel flour (Passiflora edulis L.) versus turmeric flour (Curcuma longa L.) on glycemic control: systematic review and meta-analysis. Current Diabetes Reviews 16:450−56

doi: 10.2174/1573399815666191026125941
[9]

Konta EM, Almeida MR, do Amaral CL, Darin JDC, de Rosso VV, et al. 2014. Evaluation of the antihypertensive properties of yellow passion fruit pulp (Passiflora edulis Sims f. flavicarpa Deg.) in spontaneously hypertensive rats. Phytotherapy Research 28:28−32

doi: 10.1002/ptr.4949
[10]

Lewis BJ, Herrlinger KA, Craig TA, Mehring-Franklin CE, DeFreitas Z, et al. 2013. Antihypertensive effect of passion fruit peel extract and its major bioactive components following acute supplementation in spontaneously hypertensive rats. The Journal of Nutritional Biochemistry 24:1359−66

doi: 10.1016/j.jnutbio.2012.11.003
[11]

Vuolo MM, Lima GC, Batista ÂG, Carazin CBB, Cintra DE, et al. 2020. Passion fruit peel intake decreases inflammatory response and reverts lipid peroxidation and adiposity in diet-induced obese rats. Nutrition Research 76:106−17

doi: 10.1016/j.nutres.2019.08.007
[12]

Nerdy N, Ritarwan K. 2019. Hepatoprotective activity and nephroprotective activity of peel extract from three varieties of the passion fruit (Passiflora sp.) in the albino rat. Open Access Macedonian Journal of Medical Sciences 7:536−42

doi: 10.3889/oamjms.2019.153
[13]

Prasertsri P, Booranasuksakul U, Naravoratham K, Trongtosak P. 2019. Acute effects of passion fruit juice supplementation on cardiac autonomic function and blood glucose in healthy subjects. Preventive Nutrition and Food Science 24:245−53

doi: 10.3746/pnf.2019.24.3.245
[14]

Ali MM, Anwar R, Yousef AF, Li B, Luvisi A, et al. 2021. Influence of bagging on the development and quality of fruits. Plants 10:358

doi: 10.3390/plants10020358
[15]

Caltagirone S, Rossi C, Poggi A, Ranelletti FO, Natali PG, et al. 2000. Flavonoids apigenin and quercetin inhibit melanoma growth and metastatic potential. International Journal of Cancer 87:595−600

doi: 10.1002/1097-0215(20000815)87:4<595::AID-IJC21>3.0.CO;2-5
[16]

Harborne JB, Williams CA. 2000. Advances in flavonoid research since 1992. Phytochemistry 55:481−504

doi: 10.1016/S0031-9422(00)00235-1
[17]

Cao Y, Han Y, Li D, Lin Y, Cai Y. 2016. Systematic analysis of the 4-coumarate: coenzyme A ligase (4CL) related genes and expression profiling during fruit development in the Chinese pear. Genes 7:89

doi: 10.3390/genes7100089
[18]

Haskill JS, Häyry P, Radov LA. 1978. Systemic and local immunity in allograft and cancer rejection. Contemporary Topics in Immunobiology 8:107−70

doi: 10.1007/978-1-4684-0922-2_5
[19]

Ali MM, Gull S, Hu X, Hou Y, Chen F. 2023. Exogenously applied zinc improves sugar-acid profile of loquat (Eriobotrya japonica Lindl.) by regulating enzymatic activities and expression of their metabolism-related genes. Plant Physiology and Biochemistry 201:107829

doi: 10.1016/j.plaphy.2023.107829
[20]

Yu X, Ali MM, Li B, Fang T, Chen F. 2021. Transcriptome data-based identification of candidate genes involved in metabolism and accumulation of soluble sugars during fruit development in 'Huangguan' plum. Journal of Food Biochemistry 45:e13878

doi: 10.1111/jfbc.13878
[21]

Ali MM, Alam SM, Anwar R, Ali S, Shi M, et al. 2021. Genome-wide identification, characterization and expression profiling of aluminum-activated malate transporters in Eriobotrya japonica lindl. Horticulturae 7:441

doi: 10.3390/horticulturae7110441
[22]

Ali MM, Anwar R, Rehman RNU, Ejaz S, Ali S, et al. 2022. Sugar and acid profile of loquat (Eriobotrya japonica Lindl.), enzymes assay and expression profiling of their metabolism-related genes as influenced by exogenously applied boron. Frontiers in Plant Science 13:1039360

doi: 10.3389/fpls.2022.1039360
[23]

Fu H, Qiao Y, Wang P, Mu X, Zhang J, et al. 2021. Changes of bioactive components and antioxidant potential during fruit development of Prunus humilis Bunge. PLoS One 16:e0251300

doi: 10.1371/journal.pone.0251300
[24]

Lister CE, Lancaster JE, Sutton KH, Walker JRL. 1994. Developmental changes in the concentration and composition of flavonoids in skin of a red and a green apple cultivar. Journal of the Science of Food and Agriculture 64:155−61

doi: 10.1002/jsfa.2740640204
[25]

Zoratti L, Karppinen K, Luengo Escobar A, Häggman H, Jaakola L. 2014. Light-controlled flavonoid biosynthesis in fruits. Frontiers in Plant Science 5:534

doi: 10.3389/fpls.2014.00534
[26]

Kong J. 2015. Phenylalanine ammonia-lyase, a key component used for phenylpropanoids production by metabolic engineering. RSC Advances 5:62587−603

doi: 10.1039/C5RA08196C
[27]

Singh R, Rastogi S, Dwivedi UN. 2010. Phenylpropanoid metabolism in ripening fruits. Comprehensive Reviews in Food Science and Food Safety 9:398−416

doi: 10.1111/j.1541-4337.2010.00116.x
[28]

Flores-Sanchez IJ, Verpoorte R. 2009. Plant polyketide synthases: a fascinating group of enzymes. Plant Physiology and Biochemistry 47:167−74

doi: 10.1016/j.plaphy.2008.11.005
[29]

Lu Y, Song Y, Zhu J, Xu X, Pang B, et al. 2021. Potential application of CHS and 4CL genes from grape endophytic fungus in production of naringenin and resveratrol and the improvement of polyphenol profiles and flavour of wine. Food Chemistry 347:128972

doi: 10.1016/j.foodchem.2020.128972
[30]

Li X, Zhang J, Wu Z, Lai B, Huang X, et al. 2016. Functional characterization of a glucosyltransferase gene, LcUFGT1, involved in the formation of cyanidin glucoside in the pericarp of Litchi chinensis. Physiologia Plantarum 156:139−49

doi: 10.1111/ppl.12391
[31]

Vilperte V, Boehm R, Debener T. 2021. A highly mutable GST is essential for bract colouration in Euphorbia pulcherrima Willd. Ex Klotsch. BMC Genomics 22:208

doi: 10.1186/s12864-021-07527-z
[32]

Liang D, Yousef AF, Wei X, Ali MM, Yu W, et al. 2021. Increasing the performance of Passion fruit (Passiflora edulis) seedlings by LED light regimes. Scientific Reports 11:20967

doi: 10.1038/s41598-021-00103-1
[33]

Liang D, Ali MM, Alam SM, Huang X, Yousef AF, et al. 2022. Genome-wide analysis of peroxidase genes in passion fruit (Passiflora edulis sims.) and their expression patterns induced by root colonization of Piriformospora indica under cold stress. Turkish Journal of Agriculture and Forestry 46:496−508

doi: 10.55730/1300-011x.3021
[34]

Jaakola L. 2013. New insights into the regulation of anthocyanin biosynthesis in fruits. Trends in Plant Science 18:477−83

doi: 10.1016/j.tplants.2013.06.003
[35]

Lu W, Shi Y, Wang R, Su D, Tang M, et al. 2021. Antioxidant activity and healthy benefits of natural pigments in fruits: a review. International Journal of Molecular Sciences 22:4945

doi: 10.3390/ijms22094945
[36]

Ali S, Akbar Anjum M, Sattar Khan A, Nawaz A, Ejaz S, et al. 2022. Carboxymethyl cellulose coating delays ripening of harvested mango fruits by regulating softening enzymes activities. Food Chemistry 380:131804

doi: 10.1016/j.foodchem.2021.131804
[37]

Jia H, Chai Y, Li C, Lu D, Luo J, et al. 2011. Abscisic acid plays an important role in the regulation of strawberry fruit ripening. Plant Physiology 157:188−99

doi: 10.1104/pp.111.177311
[38]

Zifkin M, Jin A, Ozga JA, Zaharia LI, Schernthaner JP, et al. 2012. Gene expression and metabolite profiling of developing highbush blueberry fruit indicates transcriptional regulation of flavonoid metabolism and activation of abscisic acid metabolism. Plant Physiology 158:200−24

doi: 10.1104/pp.111.180950
[39]

Mannino G, Gentile C, Ertani A, Serio G, Bertea CM. 2021. Anthocyanins: biosynthesis, distribution, ecological role, and use of biostimulants to increase their content in plant foods—A review. Agriculture 11:212

doi: 10.3390/agriculture11030212
[40]

Kapoor L, Simkin AJ, George Priya Doss C, Siva R. 2022. Fruit ripening: dynamics and integrated analysis of carotenoids and anthocyanins. BMC Plant Biology 22:27

doi: 10.1186/s12870-021-03411-w
[41]

Carbone F, Presuss A, De Vos RCH, D'Amico E, Perrotta G, et al. 2009. Developmental, genetic and environmental factors affect the expression of flavonoid genes, enzymes and metabolites in strawberry fruits. Plant, Cell & Environment 32:1117−31

doi: 10.1111/j.1365-3040.2009.01994.x
[42]

Uleberg E, Rohloff J, Jaakola L, Trôst K, Junttila O, et al. 2012. Effects of temperature and photoperiod on yield and chemical composition of northern and southern clones of bilberry (Vaccinium myrtillus L.). Journal of Agricultural and Food Chemistry 60:10406−14

doi: 10.1021/jf302924m
[43]

Liu J, Teng B, Zhang X, Dai M, Lin Y, et al. 2021. Anthocyanins from purple passion fruit (Passiflora edulis Sims ) rind—an innovative source for nonbleachable pigment production. Journal of Food Science 86:2978−89

doi: 10.1111/1750-3841.15807
[44]

Ali MM, Anwar R, Malik AU, Khan AS, Ahmad S, et al. 2022. Plant growth and fruit quality response of strawberry is improved after exogenous application of 24-epibrassinolide. Journal of Plant Growth Regulation 41:1786−99

doi: 10.1007/s00344-021-10422-2
[45]

Hyson DA. 2011. A comprehensive review of apples and apple components and their relationship to human health. Advances in Nutrition 2:408−20

doi: 10.3945/an.111.000513
[46]

Azuma A, Yakushiji H, Koshita Y, Kobayashi S. 2012. Flavonoid biosynthesis-related genes in grape skin are differentially regulated by temperature and light conditions. Planta 236:1067−80

doi: 10.1007/s00425-012-1650-x
[47]

Falginella L, Di Gaspero G, Castellarin SD. 2012. Expression of flavonoid genes in the red grape berry of 'Alicante Bouschet' varies with the histological distribution of anthocyanins and their chemical composition. Planta 236:1037−51

doi: 10.1007/s00425-012-1658-2
[48]

Wang C, Yu J, Cai Y, Zhu P, Liu C, et al. 2016. haracterization and functional analysis of 4-coumarate: CoA ligase genes in Mulberry. PLoS ONE 11:e0155814

doi: 10.1371/journal.pone.0155814
[49]

Vinatoru M, Mason TJ, Calinescu I. 2017. Ultrasonically assisted extraction (UAE) and microwave assisted extraction (MAE) of functional compounds from plant materials. Trends in Analytical Chemistry 97:159−78

doi: 10.1016/j.trac.2017.09.002
[50]

Kim I, Lee J. 2020. Variations in anthocyanin profiles and antioxidant activity of 12 genotypes of mulberry (Morus spp.) fruits and their changes during processing. Antioxidants 9:242

doi: 10.3390/antiox9030242
[51]

Hellström JK, Mattila PH. 2008. HPLC determination of extractable and unextractable proanthocyanidins in plant materials. Journal of Agricultural and Food Chemistry 56:7617−24

doi: 10.1021/jf801336s
[52]

Henry-Kirk RA, Plunkett B, Hall M, McGhie T, Allan AC, et al. 2018. Solar UV light regulates flavonoid metabolism in apple (Malus x domestica). Plant, Cell & Environment 41:675−88

doi: 10.1111/pce.13125
[53]

Ribani M, Bottoli CBG, Collins CH, Jardim ICSF, Melo LFC. 2004. Validação em métodos cromatográficos e eletroforéticos. Química Nova 27:771−80

doi: 10.1590/S0100-40422004000500017
[54]

Jiang Z, Huang Q, Jia D, Zhong M, Tao J, et al. 2020. Characterization of organic acid metabolism and expression of related genes during fruit development of Actinidia eriantha 'ganmi 6'. Plants 9:332

doi: 10.3390/plants9030332
[55]

Hu M, Du J, Du L, Luo Q, Xiong J. 2020. Anti-fatigue activity of purified anthocyanins prepared from purple passion fruit (P. edulis Sim) epicarp in mice. Journal of Functional Foods 65:103725

doi: 10.1016/j.jff.2019.103725
[56]

Babaoğlu Aydaş S, Ozturk S, Aslım B. 2013. Phenylalanine ammonia lyase (PAL) enzyme activity and antioxidant properties of some cyanobacteria isolates. Food Chemistry 136:164−69

doi: 10.1016/j.foodchem.2012.07.119
[57]

Sun H, Li Y, Feng S, Zou W, Guo K, et al. 2013. Analysis of five rice 4-coumarate: coenzyme A ligase enzyme activity and stress response for potential roles in lignin and flavonoid biosynthesis in rice. Biochemical and Biophysical Research Communications 430:1151−56

doi: 10.1016/j.bbrc.2012.12.019
[58]

Tropf S, Lanz T, Rensing SA, Schröder J, Schröder G. 1994. Evidence that stilbene synthases have developed from chalcone synthases several times in the course of evolution. Journal of Molecular Evolution 38:610−18

doi: 10.1007/BF00175881
[59]

Rezaei MK, Shobbar ZS, Shahbazi M, Abedini R, Zare S. 2013. Glutathione S-transferase (GST) family in barley: Identification of members, enzyme activity, and gene expression pattern. Journal of Plant Physiology 170:1277−84

doi: 10.1016/j.jplph.2013.04.005
[60]

Lalitha S. 2000. Primer premier 5. Biotech Software & Internet Report 1:270−72

doi: 10.1089/152791600459894
[61]

Munhoz CF, Santos AA, Arenhart RA, Santini L, Monteiro-Vitorello CB, et al. 2015. Analysis of plant gene expression during passion fruit-Xanthomonas axonopodis interaction implicates lipoxygenase 2 in host defence. Annals of Applied Biology 167:135−55

doi: 10.1111/aab.12215
[62]

Ali MM, Yousef AF, Li B, Chen F. 2021. Effect of environmental factors on growth and development of fruits. Tropical Plant Biology 14:226−38

doi: 10.1007/s12042-021-09291-6
[63]

Wang K, Ali MM, Guo T, Su S, Chen X, et al. 2022. TMT-based quantitative proteomic analysis reveals the response of tomato (Solanum lycopersicum L.) seedlings to ebb-and-flow subirrigation. Agronomy 12:1880

doi: 10.3390/agronomy12081880
[64]

Hu W, Wang B, Ali MM, Chen X, Zhang J, et al. 2021. Free amino acids profile and expression analysis of core genes involved in branched-chain amino acids metabolism during fruit development of longan (Dimocarpus longan lour.) cultivars with different aroma types. Biology 10:807

doi: 10.3390/biology10080807
[65]

Fang S, Lin M, Ali MM, Zheng Y, Yi X, et al. 2023. LhANS-rr1, LhDFR, and LhMYB114 regulate anthocyanin biosynthesis in flower buds of Lilium 'Siberia'. Genes 14:559

doi: 10.3390/genes14030559
[66]

Kumar S, Pandey AK. 2013. Chemistry and biological activities of flavonoids: an overview. The Scientific World Journal 2013:162750

doi: 10.1155/2013/162750
[67]

Agati G, Azzarello E, Pollastri S, Tattini M. 2012. Flavonoids as antioxidants in plants: location and functional significance. Plant Science 196:67−76

doi: 10.1016/j.plantsci.2012.07.014
[68]

Ferreres F, Sousa C, Valentão P, Andrade PB, Seabra RM, et al. 2007. New C-deoxyhexosyl flavones and antioxidant properties of Passiflora edulis leaf extract. Journal of Agricultural and Food Chemistry 55:10187−93

doi: 10.1021/jf072119y
[69]

Domínguez-Rodríguez G, García MC, Plaza M, Marina ML. 2019. Revalorization of Passiflora species peels as a sustainable source of antioxidant phenolic compounds. Science of The Total Environment 696:134030

doi: 10.1016/j.scitotenv.2019.134030
[70]

Zeraik ML, Serteyn D, Deby-Dupont G, Wauters JN, Tits M, et al. 2011. Evaluation of the antioxidant activity of passion fruit (Passiflora edulis and Passiflora alata) extracts on stimulated neutrophils and myeloperoxidase activity assays. Food Chemistry 128:259−65

doi: 10.1016/j.foodchem.2011.03.001
[71]

Dong X, Tang H, Zhang Q, Zhang C, Wang Z. 2022. Transcriptomic analyses provide new insights into jujube fruit quality affected by water deficit stress. Scientia Horticulturae 291:110558

doi: 10.1016/j.scienta.2021.110558
[72]

Shi Q, Du J, Zhu D, Li X, Li X. 2020. Metabolomic and transcriptomic analyses of anthocyanin biosynthesis mechanisms in the color mutant Ziziphus jujuba cv. tailihong. Journal of Agricultural and Food Chemistry 68:15186−98

doi: 10.1021/acs.jafc.0c05334
[73]

Memon AF, Solangi AR, Memon SQ, Mallah A, Memon N, et al. 2017. Simultaneous determination of quercetin, rutin, naringin, and naringenin in different fruits by capillary zone electrophoresis. Food Analytical Methods 10:83−91

doi: 10.1007/s12161-016-0552-0
[74]

Balbaa SI, Zaki AY, El Shamy AM. 1974. Total flavonoid and rutin content of the different organs of Sophora japonica L. Journal of Association of Official Analytical Chemists 57:752−55

doi: 10.1093/jaoac/57.3.752
[75]

Yang Z, Zhai W. 2010. Optimization of microwave-assisted extraction of anthocyanins from purple corn (Zea mays L.) cob and identification with HPLC–MS. Innovative Food Science & Emerging Technologies 11:470−76

doi: 10.1016/j.ifset.2010.03.003
[76]

Jaiswal V, DerMarderosian A, Porter JR. 2010. Anthocyanins and polyphenol oxidase from dried arils of pomegranate (Punica granatum L.). Food Chemistry 118:11−16

doi: 10.1016/j.foodchem.2009.01.095
[77]

Argentieri MP, Levi M, Guzzo F, Avato P. 2015. Phytochemical analysis of Passiflora loefgrenii Vitta, a rich source of luteolin-derived flavonoids with antioxidant properties. Journal of Pharmacy and Pharmacology 67:1603−12

doi: 10.1111/jphp.12454
[78]

Waki T, Mameda R, Nakano T, Yamada S, Terashita M, et al. 2020. A conserved strategy of chalcone isomerase-like protein to rectify promiscuous chalcone synthase specificity. Nature Communications 11:870

doi: 10.1038/s41467-020-14558-9
[79]

Liou G, Chiang YC, Wang Y, Weng JK. 2018. Mechanistic basis for the evolution of chalcone synthase catalytic cysteine reactivity in land plants. Journal of Biological Chemistry 293:18601−12

doi: 10.1074/jbc.RA118.005695
[80]

Huang J, Qu L, Yang J, Yin H, Gu H. 2004. A preliminary study on the origin and evolution of chalcone synthase (CHS) gene in angiosperms. Acta Botanica Sinica 46:10−19

[81]

Holton TA, Cornish EC. 1995. Genetics and biochemistry of anthocyanin biosynthesis. The Plant Cell 7:1071−83

doi: 10.1105/tpc.7.7.1071
[82]

Jaakola L, Määttä K, Pirttilä AM, Törrönen R, Kärenlampi S, et al. 2002. Expression of genes involved in anthocyanin biosynthesis in relation to anthocyanin, proanthocyanidin, and flavonol levels during bilberry fruit development. Plant Physiology 130:729−39

doi: 10.1104/pp.006957
[83]

Ni Y, Jiang H, Lei B, Li J, Chai Y. 2008. Molecular cloning, characterization and expression of two rapeseed (Brassica napus L.) cDNAs orthologous to Arabidopsis thaliana phenylalanine ammonia-lyase 1. Euphytica 159:1−16

doi: 10.1007/s10681-007-9448-9
[84]

Bai C, Xu J, Cao B, Li X, Li G. 2018. Transcriptomic analysis and dynamic expression of genes reveal flavonoid synthesis in Scutellaria viscidula. Acta Physiologia Plantarum 40:161

doi: 10.1007/s11738-018-2733-5
[85]

Gould KS, Lister C. 2006. Flavonoid functions in plants. In Flavonoids: Chemistry, Biochemistry and Applications, eds Andersen OM, Markham KR. Boca Raton, USA: CRC Press. pp. 397– 441.

[86]

Aharoni A, Ric de Vos CH, Verhoeven HA, Maliepaard CA, Kruppa G, et al. 2002. Nontargeted metabolome analysis by use of Fourier Transform Ion Cyclotron Mass Spectrometry. OMICS: A Journal of Integrative Biology 6:217−34

doi: 10.1089/15362310260256882
[87]

Fait A, Hanhineva K, Beleggia R, Dai N, Rogachev I, et al. 2008. Reconfiguration of the achene and receptacle metabolic networks during strawberry fruit development. Plant Physiology 148:730−50

doi: 10.1104/pp.108.120691
[88]

Burbulis IE, Winkel-Shirley B. 1999. Interactions among enzymes of the Arabidopsis flavonoid biosynthetic pathway. Proceedings of the National Academy of Sciences of the United States of America 96:12929−34

doi: 10.1073/pnas.96.22.12929
[89]

Winkel-Shirley B. 2001. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiology 126:485−93

doi: 10.1104/pp.126.2.485
[90]

Qi Y, Li C, Duan C, Gu C, Zhang Q. 2021. Integrated metabolomic and transcriptomic analysis reveals the flavonoid regulatory network by Eutrema EsMYB90. International Journal of Molecular Sciences 22:8751

doi: 10.3390/ijms22168751
[91]

Zhao X, Yuan Z, Feng L, Fang Y. 2015. Cloning and expression of anthocyanin biosynthetic genes in red and white pomegranate. Journal of Plant Research 128:687−96

doi: 10.1007/s10265-015-0717-8
[92]

Boss PK, Davies C, Robinson SP. 1996. Analysis of the expression of anthocyanin pathway genes in developing Vitis vinifera L. cv Shiraz grape berries and the implications for pathway regulation. Plant Physiology 111:1059−66

doi: 10.1104/pp.111.4.1059
[93]

Kondo S, Hiraoka K, Kobayashi S, Honda C, Terahara N. 2002. Changes in the expression of anthocyanin biosynthetic genes during apple development. Journal of the American Society for Horticultural Science 127:971−76

doi: 10.21273/JASHS.127.6.971
[94]

Zhai R, Wang Z, Zhang S, Meng G, Song L, et al. 2016. Two MYB transcription factors regulate flavonoid biosynthesis in pear fruit (Pyrus bretschneideri Rehd.). Journal of Experimental Botany 67:1275−84

doi: 10.1093/jxb/erv524
[95]

Zhao Y, Zhang Y, Liu H, Zhang X, Ni R, et al. 2019. Functional characterization of a liverworts bHLH transcription factor involved in the regulation of bisbibenzyls and flavonoids biosynthesis. BMC Plant Biology 19:497

doi: 10.1186/s12870-019-2109-z
[96]

Liu Z, Liu Y, Coulter JA, Shen B, Li Y, et al. 2020. The WD40 gene family in potato (Solanum tuberosum L.):genome-wide analysis and identification of anthocyanin and drought-related WD40s. Agronomy 10:401

doi: 10.3390/agronomy10030401
[97]

Kim S, Hwang G, Lee S, Zhu J, Paik I, et al. 2017. High ambient temperature represses anthocyanin biosynthesis through degradation of HY5. Frontiers in Plant Science 8:1787

doi: 10.3389/fpls.2017.01787