[1]

Zeng L, Xiao Y, Zhou X, Yu J, Jian G, et al. 2021. Uncovering reasons for differential accumulation of linalool in tea cultivars with different leaf area. Food Chemistry 5:128752

doi: 10.1016/j.foodchem.2020.128752
[2]

Wang P, Gu M, Shao S, Chen X, Hou B, et al. 2022. Changes in non-volatile and volatile metabolites associated with heterosis in tea plants (Camellia sinensis). Journal of Agricultural and Food Chemistry 70:3067−78

doi: 10.1021/acs.jafc.1c08248
[3]

Guo X, Schwab W, Ho C, Song C, Wan X. 2022. Characterization of the aroma profiles of oolong tea made from three tea cultivars by both GC-MS and GC-IMS. Food Chemistry 376:131933

doi: 10.1016/j.foodchem.2021.131933
[4]

Tadakazu T. 1981. Variation in amounts of linalol and geraniol produced in tea shoots by mechanical injury. Phytochemistry 9:2149−51

doi: 10.1016/0031-9422(81)80104-5
[5]

Hu C, Li D, Ma Y, Zhang W, Lin C, et al. 2018. Formation mechanism of the oolong tea characteristic aroma during bruising and withering treatment. Food Chemistry 269:202−11

doi: 10.1016/j.foodchem.2018.07.016
[6]

Yang Z, Baldermann S, Watanabe N. 2013. Recent studies of the volatile compounds in tea. Food Research International 53:585−99

doi: 10.1016/j.foodres.2013.02.011
[7]

Liu S, Shan B, Zhou X, Gao W, Liu Y, et al. 2022. Transcriptome and metabolomics integrated analysis reveals terpene synthesis genes controlling linalool synthesis in Grape berries. Journal of Agricultural and Food Chemistry 70:9084−94

doi: 10.1021/acs.jafc.2c00368
[8]

Yang Z, Li Y, Gao F, Jin W, Li S, et al. 2020. MYB21 interacts with MYC2 to control the expression of terpene synthase genes in flowers of Freesia hybrida and Arabidopsis thaliana. Journal of Experimental Botany 71:4140−58

doi: 10.1093/jxb/eraa184
[9]

Wang P, Yu J, Jin S, Chen S, Yue C, et al. 2021. Genetic basis of high aroma and stress tolerance in the oolong tea cultivar genome. Horticulture Research 8:107

doi: 10.1038/s41438-021-00542-x
[10]

Wang P, Gu M, Yu X, Shao S, Du J, et al. 2022. Allele-specific expression and chromatin accessibility contribute to heterosis in tea plants (Camellia sinensis). The Plant Journal 112:1194−211

doi: 10.1111/tpj.16004
[11]

Liu H, Li S, Zhong Y, Lan S, Brennan CS, et al. 2021. Study of aroma compound formations and transformations during Jinxuan and Qingxin oolong tea processing. International Journal of Food Science & Technology 56:5629−38

doi: 10.1111/ijfs.15205
[12]

Zheng Y, Wang P, Chen X, Yue C, Guo Y, et al. 2021. Integrated transcriptomics and metabolomics provide novel insight into changes in specialized metabolites in an albino tea cultivar (Camellia sinensis (L.) O. Kuntz). Plant Physiology and Biochemistry 160:27−36

doi: 10.1016/j.plaphy.2020.12.029
[13]

Ye J, Wang Y, Lin S, Hong L, Kang J, et al. 2023. Effect of processing on aroma intensity and odor characteristic of Shuixian (Camellia sinensis) tea. Food Chemistry: X 17:100616

doi: 10.1016/j.fochx.2023.100616
[14]

Chen Q, Zhu Y, Yan H, Chen M, Xie D, et al. 2020. Identification of aroma composition and key odorants contributing to aroma characteristics of white teas. Molecules 25:6050

doi: 10.3390/molecules25246050
[15]

Chen Q, Zhu Y, Dai W, Lv H, Mu B, et al. 2019. Aroma formation and dynamic changes during white tea processing. Food Chemistry 274:915−24

doi: 10.1016/j.foodchem.2018.09.072
[16]

Zhang W, Luo C, Scossa F, Zhang Q, Usadel B, et al. 2021. A phased genome based on single sperm sequencing reveals crossover pattern and complex relatedness in tea plants. The Plant Journal 105:197−208

doi: 10.1111/tpj.15051
[17]

Baba R, Kumazawa K. 2014. Characterization of the potent odorants contributing to the characteristic aroma of Chinese green tea infusions by aroma extract dilution analysis. Journal of Agricultural and Food Chemistry 62:8308−13

doi: 10.1021/jf502308a
[18]

Gao T, Hou B, Shao S, Xu M, Zheng Y, et al. 2023. Differential metabolites and transcriptional regulation of seven major tea cultivars (Camellia sinensis) in China. Journal of Integrative Agriculture In Press

doi: 10.1016/j.jia.2023.02.009
[19]

Zheng Y, Hu Q, Yang Y, Wu Z, Wu L, et al. 2022. Architecture and dynamics of the wounding-induced gene regulatory network during the oolong tea manufacturing process (Camellia sinensis). Frontiers in Plant Science 12:788469

doi: 10.3389/fpls.2021.788469
[20]

Baldermann S, Yang Z, Katsuno T, Tu VA, Mase N, et al. 2014. Discrimination of green, oolong, and black teas by GC-MS analysis of characteristic volatile flavor compounds. American Journal of Analytical Chemistry 5:620−32

doi: 10.4236/ajac.2014.59070
[21]

Wu H, Huang W, Chen Z, Chen Z, Shi J, et al. 2019. GC-MS-based metabolomic study reveals dynamic changes of chemical compositions during black tea processing. Food Research International 120:330−38

doi: 10.1016/j.foodres.2019.02.039
[22]

Liu P, Zheng P, Gong Z, Feng L, Gao S, et al. 2020. Comparing characteristic aroma components of bead-shaped green teas from different regions using headspace solid-phase microextraction and gas chromatography-mass spectrometry/olfactometry combined with chemometrics. European Food Research and Technology 246:1703−14

doi: 10.1007/s00217-020-03514-y
[23]

Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology 15:550

doi: 10.1186/s13059-014-0550-8
[24]

Wu T, Hu E, Xu S, Chen M, Guo P, et al. 2021. clusterProfiler 40: A universal enrichment tool for interpreting omics data. The Innovation 2(3):100141

doi: 10.1016/j.xinn.2021.100141
[25]

Wang P, Chen S, Gu M, Chen X, Chen X, et al. 2020. Exploration of the effects of different blue LED light intensities on flavonoid and lipid metabolism in tea plants via transcriptomics and metabolomics. International Journal of Molecular Sciences 21:4606

doi: 10.3390/ijms21134606
[26]

Chen X, Wang P, Gu M, Hou B, Zhang C, et al. 2022. Identification of PAL genes related to anthocyanin synthesis in tea plants and its correlation with anthocyanin content. Horticultural Plant Journal 8:381−94

doi: 10.1016/j.hpj.2021.12.005
[27]

Ma L, Gao M, Zhang L, Qiao Y, Li J, et al. 2022. Characterization of the key aroma-active compounds in high-grade Dianhong tea using GC-MS and GC-O combined with sensory-directed flavor analysis. Food Chemistry 378:132058

doi: 10.1016/j.foodchem.2022.132058
[28]

Wang M, Ma W, Shi J, Zhu Y, Lin Z, et al. 2020. Characterization of the key aroma compounds in Longjing tea using stir bar sorptive extraction (SBSE) combined with gas chromatography-mass spectrometry (GC-MS), gas chromatography-olfactometry (GC-O), odor activity value (OAV), and aroma recombination. Food Research International 130:108908

doi: 10.1016/j.foodres.2019.108908
[29]

Joshi R, Gulati A. 2015. Fractionation and identification of minor and aroma-active constituents in Kangra orthodox black tea. Food Chemistry 167:290−98

doi: 10.1016/j.foodchem.2014.06.112
[30]

Zheng Y, Hu Q, Wu Z, Bi W, Chen B, et al. 2022. Volatile metabolomics and coexpression network analyses provide insight into the formation of the characteristic cultivar aroma of oolong tea (Camellia sinensis). LWT 164:113666

doi: 10.1016/j.lwt.2022.113666
[31]

Shao Y, Zhang D, Hu X, Wu Q, Jiang C, et al. 2019. Arbuscular mycorrhiza improves leaf food quality of tea plants. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 47(3):608−14

doi: 10.15835/nbha47311434
[32]

Zhou Z, Wu Q, Yao Z, Deng H, Liu B, et al. 2020. Dynamics of ADH and related genes responsible for the transformation of C6-aldehydes to C6-alcohols during the postharvest process of oolong tea. Food Science & Nutrition 8:104−13

doi: 10.1002/fsn3.1272
[33]

Nie C, Gao Y, Du X, Bian J, Li H, et al. 2020. Characterization of the effect of cis-3-hexen-1-ol on green tea aroma. Scientific Reports 10:15506

doi: 10.1038/s41598-020-72495-5
[34]

Hipólito T, Bastos G, Barbosa T, de Souza T, Coelho L, et al. 2018. Synthesis, activity, and docking studies of eugenol-based glucosides as new agents against Candida sp. Chemical Biology & Drug Design 92:1514−24

doi: 10.1111/cbdd.13318
[35]

Chen D, Sun Z, Gao J, Peng J, Wang Z, et al. 2022. Metabolomics combined with proteomics provides a novel interpretation of the compound differences among Chinese tea cultivars (Camellia sinensis var. sinensis) with different manufacturing suitabilities. Food Chemistry 377:131976

doi: 10.1016/j.foodchem.2021.131976
[36]

Fang Q, Luo W, Zheng Y, Ye Y, Hu M, et al. 2022. Identification of key aroma compounds responsible for the floral ascents of green and black teas from different tea cultivars. Molecules 27(9):2809

doi: 10.3390/molecules27092809
[37]

Zheng X, Li Q, Xiang L, Liang Y. 2016. Recent advances in volatiles of teas. Molecules 21(3):338

doi: 10.3390/molecules21030338
[38]

Chen S, Liu H, Zhao X, Li X, Shan W, et al. 2020. Non-targeted metabolomics analysis reveals dynamic changes of volatile and non-volatile metabolites during oolong tea manufacture. Food Research International 128:108778

doi: 10.1016/j.foodres.2019.108778
[39]

Zeng L, Jin S, Fu Y, Chen L, Yin J, et al. 2022. A targeted and untargeted metabolomics analysis of 'Oriental Beauty' oolong tea during processing. Beverage Plant Research 2:20

doi: 10.48130/bpr-2022-0020
[40]

Chen H, Köllner T, Li G, Wei G, Chen X, et al. 2020. Combinatorial evolution of a terpene synthase gene cluster explains terpene variations in Oryza. Plant Physiology 182:480−92

doi: 10.1104/pp.19.00948
[41]

Yao X, Qi Y, Chen H, Zhang B, Chen Z, et al. 2023. Study of Camellia sinensis diploid and triploid leaf development mechanism based on transcriptome and leaf characteristics. PLoS One 18:e0275652

doi: 10.1371/journal.pone.0275652
[42]

Wang K, Liu F, Liu Z, Huang J, Xu Z, et al. 2011. Comparison of catechins and volatile compounds among different types of tea using high performance liquid chromatograph and gas chromatograph mass spectrometer. International Journal of Food Science & Technology 46:1406−12

doi: 10.1111/j.1365-2621.2011.02629.x
[43]

Yang Y, Qian MC, Deng Y, Yuan H, Jiang Y. 2022. Insight into aroma dynamic changes during the whole manufacturing process of chestnut-like aroma green tea by combining GC-E-Nose, GC-IMS, and GC × GC-TOFMS. Food Chemistry 387:132813

doi: 10.1016/j.foodchem.2022.132813
[44]

Liao Y, Tan H, Jian G, Zhou X, Huo L, et al. 2021. Herbivore-induced (Z)-3-Hexen-1-ol is an airborne signal that promotes direct and indirect defenses in tea (Camellia sinensis) under light. Journal of Agricultural and Food Chemistry 69:12608−20

doi: 10.1021/acs.jafc.1c04290
[45]

Zheng Y, Wang P, Chen X, Sun Y, Yue C, et al. 2019. Transcriptome and metabolite profiling reveal novel insights into volatile heterosis in the tea plant (Camellia Sinensis). Molecules 24:3380

doi: 10.3390/molecules24183380
[46]

Wu S, Gu D, Chen Y, Wang F, Qian J, et al. 2023. Variations in oolong tea key characteristic floral aroma compound contents among tea (Camellia sinensis) germplasms exposed to postharvest stress. Postharvest Biology and Technology 197:112201

doi: 10.1016/j.postharvbio.2022.112201
[47]

Medina-Puche L, Molina-Hidalgo FJ, Boersma M, Schuurink RC, López-Vidriero I, et al. 2015. An R2R3-MYB transcription factor regulates eugenol production in ripe strawberry fruit receptacles. Plant Physiology 168:598−614

doi: 10.1104/pp.114.252908
[48]

Muhlemann JK, Woodworth BD, Morgan JA, Dudareva N. 2014. The monolignol pathway contributes to the biosynthesis of volatile phenylpropenes in flowers. New Phytologist 3:661−70

doi: 10.1111/nph.12913
[49]

Adebesin F, Widhalm JR, Lynch JH, McCoy RM, Dudareva N. 2018. A peroxisomal thioesterase plays auxiliary roles in plant β-oxidative benzoic acid metabolism. The Plant Journal 93:905−16

doi: 10.1111/tpj.13818
[50]

Bussell JD, Reichelt M, Wiszniewski AA, Gershenzon J, Smith SM. 2014. Peroxisomal ATP-binding cassette transporter COMATOSE and the multifunctional protein ABNORMAL INFLORESCENCE MERISTEM are required for the production of benzoylated metabolites in Arabidopsis seeds. Plant Physiology 164:48−54

doi: 10.1104/pp.113.229807
[51]

Xu Y, Zhu C, Xu C, Sun J, Grierson D, et al. 2019. Integration of metabolite profiling and transcriptome analysis reveals genes related to volatile terpenoid metabolism in finger citron (C. medica var. sarcodactylis). Molecules 24:2564

doi: 10.3390/molecules24142564
[52]

Hong G, Xue X, Mao Y, Wang L, Chen X. 2012. Arabidopsis MYC2 interacts with DELLA proteins in regulating sesquiterpene synthase gene expression. The Plant Cell 24:2635−48

doi: 10.1105/tpc.112.098749
[53]

Tian J, Ma Z, Zhao K, Zhang J, Xiang L, et al. 2019. Transcriptomic and proteomic approaches to explore the differences in monoterpene and benzenoid biosynthesis between scented and unscented genotypes of wintersweet. Physiologia Plantarum 166:478−93

doi: 10.1111/ppl.12828
[54]

Aslam MZ, Lin X, Li X, Yang N, Chen L. 2020. Molecular cloning and functional characterization of CpMYC2 and CpBHLH13 transcription factors from wintersweet (Chimonanthus praecox L.). Plants 9:785

doi: 10.3390/plants9060785
[55]

Chen X, Wang P, Zheng Y, Gu M, Lin X, et al. 2020. Comparison of metabolome and transcriptome of flavonoid biosynthesis pathway in a purple-leaf tea germplasm Jinmingzao and a green-leaf tea germplasm Huangdan reveals their relationship with genetic mechanisms of color formation. International Journal of Molecular Sciences 21:4167

doi: 10.3390/ijms21114167
[56]

Qiao D, Mi X, An Y, Xie H, Cao K, et al. 2021. Integrated metabolic phenotypes and gene expression profiles revealed the effect of spreading on aroma volatiles formation in postharvest leaves of green tea. Food Research International 149:110680

doi: 10.1016/j.foodres.2021.110680